
C H A P T E R

3 Interpolation and Polynomial Approximation

Introduction
A census of the population of the United States is taken every 10 years. The following
table lists the population, in thousands of people, from 1950 to 2000, and the data are also
represented in the figure.

Year 1950 1960 1970 1980 1990 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(t)

t1950

Year

Po
pu

la
tio

n

1 � 108

2 � 108

3 � 108

1960 1970 1980 1990 2000

In reviewing these data, we might ask whether they could be used to provide a rea-
sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of
this type can be obtained by using a function that fits the given data. This process is called
interpolation and is the subject of this chapter. This population problem is considered
throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of
Section 3.5.
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106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
y

xa b

y � f (x)

y � f (x) � ε

y � f (x) � ε

y � P (x)

Theorem 3.1 (Weierstrass Approximation Theorem)
Suppose that f is defined and continuous on [a, b]. For each ε > 0, there exists a polynomial
P(x), with the property that

|f (x)− P(x)| < ε, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

Karl Weierstrass (1815–1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.
Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor
polynomials are
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3.1 Interpolation and the Lagrange Polynomial 107

P0(x) = 1, P1(x) = 1+ x, P2(x) = 1+ x + x2

2
, P3(x) = 1+ x + x2

2
+ x3

6
,

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
, and P5(x) = 1+ x + x2

2
+ x3

6
+ x4

24
+ x5

120
.

Very little of Weierstrass’s work
was published during his lifetime,
but his lectures, particularly on
the theory of functions, had
significant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from
zero.)

Figure 3.2
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y � P3(x)

y � P4(x)

y � P5(x)

y � P1(x)

y � P0(x)

y � ex

Although better approximations are obtained for f (x) = ex if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to
approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =
n∑

k=0

f (k)(1)

k! (x − 1)k =
n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85
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108 C H A P T E R 3 Interpolation and Polynomial Approximation

For the Taylor polynomials all the information used in the approximation is concentrated
at the single number x0, so these polynomials will generally give inaccurate approximations
as we move away from x0. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to x0. For ordinary computational
purposes it is more efficient to use methods that include information at various points. We
consider this in the remainder of the chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes, but for the derivation of numerical
techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct
points (x0, y0) and (x1, y1) is the same as approximating a function f for which f (x0) = y0

and f (x1) = y1 by means of a first-degree polynomial interpolating, or agreeing with, the
values of f at the given points. Using this polynomial for approximation within the interval
given by the endpoints is called polynomial interpolation.

Define the functions

L0(x) = x − x1

x0 − x1
and L1(x) = x − x0

x1 − x0
.

The linear Lagrange interpolating polynomial through (x0, y0) and (x1, y1) is

P(x) = L0(x)f (x0)+ L1(x)f (x1) = x − x1

x0 − x1
f (x0)+ x − x0

x1 − x0
f (x1).

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1,

which implies that

P(x0) = 1 · f (x0)+ 0 · f (x1) = f (x0) = y0

and

P(x1) = 0 · f (x0)+ 1 · f (x1) = f (x1) = y1.

So P is the unique polynomial of degree at most one that passes through (x0, y0) and
(x1, y1).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (5, 1).

Solution In this case we have

L0(x) = x − 5

2− 5
= −1

3
(x − 5) and L1(x) = x − 2

5− 2
= 1

3
(x − 2),

so

P(x) = −1

3
(x − 5) · 4+ 1

3
(x − 2) · 1 = −4

3
x + 20

3
+ 1

3
x − 2

3
= −x + 6.

The graph of y = P(x) is shown in Figure 3.3.
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3.1 Interpolation and the Lagrange Polynomial 109

Figure 3.3
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To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n+ 1 points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).

(See Figure 3.4.)

Figure 3.4
y

xx0 x1 x2 xn

y � P(x)

y � f (x)

In this case we first construct, for each k = 0, 1, . . . , n, a function Ln,k(x) with the
property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each
i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at
x = xk . Thus

Ln,k(x) = (x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k (when n is even) is shown in Figure 3.5.
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110 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.5

xx0 x1 xk�1 xk xk�1 xn�1 xn

Ln,k(x)

1

. . .. . .

The interpolating polynomial is easily described once the form of Ln,k is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

The interpolation formula named
for Joseph Louis Lagrange
(1736–1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736–1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x)+ · · · + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=
n∏

i=0
i �=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write
products compactly and parallels
the symbol

∑
, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In
nested form they are

L0(x) = (x − 2.75)(x − 4)

(2− 2.5)(2− 4)
= 2

3
(x − 2.75)(x − 4),

L1(x) = (x − 2)(x − 4)

(2.75− 2)(2.75− 4)
= −16

15
(x − 2)(x − 4),

and

L2(x) = (x − 2)(x − 2.75)

(4− 2)(4− 2.5)
= 2

5
(x − 2)(x − 2.75).
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3.1 Interpolation and the Lagrange Polynomial 111

Also, f (x0) = f (2) = 1/2, f (x1) = f (2.75) = 4/11, and f (x2) = f (4) = 1/4, so

P(x) =
2∑

k=0

f (xk)Lk(x)

= 1

3
(x − 2.75)(x − 4)− 64

165
(x − 2)(x − 4)+ 1

10
(x − 2)(x − 2.75)

= 1

22
x2 − 35

88
x + 49

44
.

(b) An approximation to f (3) = 1/3 (see Figure 3.6) is

f (3) ≈ P(3) = 9

22
− 105

88
+ 49

44
= 29

88
≈ 0.32955.

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about x0 = 1 could be used to reasonably approximate f (x) = 1/x
at x = 3.

Figure 3.6

x

y

1

2

3

4

51 2 3 4
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The interpolating polynomial P of degree less than or equal to 3 is defined in Maple
with

P := x→ interp([2, 11/4, 4], [1/2, 4/11, 1/4], x)

x→ interp

([
2,

11

4
, 4

]
,

[
1

2
,

4

11
,

1

4

]
, x

)

To see the polynomial, enter

P(x)

1

22
x2 − 35

88
x + 49

44

Evaluating P(3) as an approximation to f (3) = 1/3, is found with

evalf(P(3))

0.3295454545

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112 C H A P T E R 3 Interpolation and Polynomial Approximation

The interpolating polynomial can also be defined in Maple using the CurveFitting package
and the call PolynomialInterpolation.

The next step is to calculate a remainder term or bound for the error involved in
approximating a function by an interpolating polynomial.

Theorem 3.3 Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b]. Then,
for each x in [a, b], a number ξ(x) (generally unknown) between x0, x1, . . . , xn, and hence
in (a, b), exists with

f (x) = P(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn), (3.3)

where P(x) is the interpolating polynomial given in Eq. (3.1).There are other ways that the
error term for the Lagrange
polynomial can be expressed, but
this is the most useful form and
the one that most closely agrees
with the standard Taylor
polynomial error form.

Proof Note first that if x = xk , for any k = 0, 1, . . . , n, then f (xk) = P(xk), and choosing
ξ(xk) arbitrarily in (a, b) yields Eq. (3.3).

If x �= xk , for all k = 0, 1, . . . , n, define the function g for t in [a, b] by

g(t) = f (t)− P(t)− [f (x)− P(x)] (t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)

= f (t)− P(t)− [f (x)− P(x)]
n∏

i=0

(t − xi)

(x − xi)
.

Since f ∈ Cn+1[a, b], and P ∈ C∞[a, b], it follows that g ∈ Cn+1[a, b]. For t = xk , we have

g(xk) = f (xk)− P(xk)− [f (x)− P(x)]
n∏

i=0

(xk − xi)

(x − xi)
= 0− [f (x)− P(x)] · 0 = 0.

Moreover,

g(x) = f (x)− P(x)− [f (x)− P(x)]
n∏

i=0

(x − xi)

(x − xi)
= f (x)− P(x)− [f (x)− P(x)] = 0.

Thus g ∈ Cn+1[a, b], and g is zero at the n + 2 distinct numbers x, x0, x1, . . . , xn. By
Generalized Rolle’s Theorem 1.10, there exists a number ξ in (a, b) for which g(n+1)(ξ) = 0.
So

0= g(n+1)(ξ)= f (n+1)(ξ)−P(n+1)(ξ)−[f (x)−P(x)] d
n+1

dtn+1

[
n∏

i=0

(t− xi)

(x− xi)

]
t=ξ

. (3.4)

However P(x) is a polynomial of degree at most n, so the (n+1)st derivative, P(n+1)(x),
is identically zero. Also,

∏n
i=0[(t − xi)/(x − xi)] is a polynomial of degree (n+ 1), so

n∏
i=0

(t − xi)

(x − xi)
=
[

1∏n
i=0(x − xi)

]
tn+1 + (lower-degree terms in t),

and

dn+1

dtn+1

n∏
i=0

(t − xi)

(x − xi)
= (n+ 1)!∏n

i=0(x − xi)
.
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3.1 Interpolation and the Lagrange Polynomial 113

Equation (3.4) now becomes

0 = f (n+1)(ξ)− 0− [f (x)− P(x)] (n+ 1)!∏n
i=0(x − xi)

,

and, upon solving for f (x), we have

f (x) = P(x)+ f
(n+1)(ξ)

(n+ 1)!
n∏

i=0

(x − xi).

The error formula in Theorem 3.3 is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay-
lor polynomial. The nth Taylor polynomial about x0 concentrates all the known information
at x0 and has an error term of the form

f (n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

The Lagrange polynomial of degree n uses information at the distinct numbers x0, x1, . . . ,
xn and, in place of (x − x0)

n, its error formula uses a product of the n + 1 terms (x − x0),
(x − x1), . . . , (x − xn):

f (n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn).

Example 3 In Example 2 we found the second Lagrange polynomial for f (x) = 1/x on [2, 4] using the
nodes x0 = 2, x1 = 2.75, and x2 = 4. Determine the error form for this polynomial, and
the maximum error when the polynomial is used to approximate f (x) for x ε [2, 4].
Solution Because f (x) = x−1, we have

f ′(x) = −x−2, f ′′(x) = 2x−3, and f ′′′(x) = −6x−4.

As a consequence, the second Lagrange polynomial has the error form

f ′′′(ξ(x))
3! (x−x0)(x−x1)(x−x2) = −(ξ(x))−4(x−2)(x−2.75)(x−4), for ξ(x) in (2, 4).

The maximum value of (ξ(x))−4 on the interval is 2−4 = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial

g(x) = (x − 2)(x − 2.75)(x − 4) = x3 − 35

4
x2 + 49

2
x − 22.

Because

Dx

(
x3 − 35

4
x2 + 49

2
x − 22

)
= 3x2 − 35

2
x + 49

2
= 1

2
(3x − 7)(2x − 7),

the critical points occur at

x = 7

3
, with g

(
7

3

)
= 25

108
, and x = 7

2
, with g

(
7

2

)
= − 9

16
.

Hence, the maximum error is

f ′′′(ξ(x))
3! |(x − x0)(x − x1)(x − x2)| ≤ 1

16 · 6
∣∣∣∣− 9

16

∣∣∣∣ = 3

512
≈ 0.00586.
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The next example illustrates how the error formula can be used to prepare a table of
data that will ensure a specified interpolation error within a specified bound.

Example 4 Suppose a table is to be prepared for the function f (x) = ex, for x in [0, 1]. Assume the
number of decimal places to be given per entry is d ≥ 8 and that the difference between
adjacent x-values, the step size, is h. What step size h will ensure that linear interpolation
gives an absolute error of at most 10−6 for all x in [0, 1]?
Solution Let x0, x1, . . . be the numbers at which f is evaluated, x be in [0,1], and suppose
j satisfies xj ≤ x ≤ xj+1. Eq. (3.3) implies that the error in linear interpolation is

|f (x)− P(x)| =
∣∣∣∣f (2)(ξ)2! (x − xj)(x − xj+1)

∣∣∣∣ = |f (2)(ξ)|2
|(x − xj)||(x − xj+1)|.

The step size is h, so xj = jh, xj+1 = (j + 1)h, and

|f (x)− P(x)| ≤ |f
(2)(ξ)|
2! |(x − jh)(x − (j + 1)h)|.

Hence

|f (x)− P(x)| ≤ maxξ∈[0,1] eξ

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|

≤ e

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|.

Consider the function g(x) = (x − jh)(x − (j + 1)h), for jh ≤ x ≤ (j + 1)h. Because

g′(x) = (x − (j + 1)h)+ (x − jh) = 2

(
x − jh− h

2

)
,

the only critical point for g is at x = jh+ h/2, with g(jh+ h/2) = (h/2)2 = h2/4.
Since g(jh) = 0 and g((j + 1)h) = 0, the maximum value of |g′(x)| in [jh, (j + 1)h]

must occur at the critical point which implies that

|f (x)− P(x)| ≤ e

2
max

xj≤x≤xj+1
|g(x)| ≤ e

2
· h2

4
= eh2

8
.

Consequently, to ensure that the the error in linear interpolation is bounded by 10−6, it is
sufficient for h to be chosen so that

eh2

8
≤ 10−6. This implies that h < 1.72× 10−3.

Because n = (1 − 0)/h must be an integer, a reasonable choice for the step size is
h = 0.001.

E X E R C I S E S E T 3.1

1. For the given functions f (x), let x0 = 0, x1 = 0.6, and x2 = 0.9. Construct interpolation polynomials
of degree at most one and at most two to approximate f (0.45), and find the absolute error.

a. f (x) = cos x

b. f (x) = √1+ x

c. f (x) = ln(x + 1)

d. f (x) = tan x
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3.1 Interpolation and the Lagrange Polynomial 115

2. For the given functions f (x), let x0 = 1, x1 = 1.25, and x2 = 1.6. Construct interpolation polynomials
of degree at most one and at most two to approximate f (1.4), and find the absolute error.
a. f (x) = sin πx

b. f (x) = 3
√

x − 1

c. f (x) = log10(3x − 1)

d. f (x) = e2x − x

3. Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.

4. Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.

5. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. The data for Exercise 5 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = x ln x

b. f (x) = x3 + 4.001x2 + 4.002x + 1.101

c. f (x) = x cos x − 2x2 + 3x − 1

d. f (x) = sin(ex − 2)

8. The data for Exercise 6 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = e2x

b. f (x) = x4 − x3 + x2 − x + 1

c. f (x) = x2 cos x − 3x

d. f (x) = ln(ex + 2)

9. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). The coefficient
of x3 in P3(x) is 6. Find y.

10. Let f (x) = √x − x2 and P2(x) be the interpolation polynomial on x0 = 0, x1 and x2 = 1. Find the
largest value of x1 in (0, 1) for which f (0.5)− P2(0.5) = −0.25.

11. Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-
mial approximation to f (1.09). The function being approximated is f (x) = log10(tan x). Use this
knowledge to find a bound for the error in the approximation.

f (1.00) = 0.1924 f (1.05) = 0.2414 f (1.10) = 0.2933 f (1.15) = 0.3492

12. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic
to approximate cos 0.750 using the following values. Find an error bound for the approximation.

cos 0.698 = 0.7661 cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the
actual error and the error bound.
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13. Construct the Lagrange interpolating polynomials for the following functions, and find a bound for
the absolute error on the interval [x0, xn].
a. f (x) = e2x cos 3x, x0 = 0, x1 = 0.3, x2 = 0.6, n = 2

b. f (x) = sin(ln x), x0 = 2.0, x1 = 2.4, x2 = 2.6, n = 2

c. f (x) = ln x, x0 = 1, x1 = 1.1, x2 = 1.3, x3 = 1.4, n = 3

d. f (x) = cos x + sin x, x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 1.0, n = 3

14. Let f (x) = ex , for 0 ≤ x ≤ 2.

a. Approximate f (0.25) using linear interpolation with x0 = 0 and x1 = 0.5.

b. Approximate f (0.75) using linear interpolation with x0 = 0.5 and x1 = 1.

c. Approximate f (0.25) and f (0.75) by using the second interpolating polynomial with x0 = 0,
x1 = 1, and x2 = 2.

d. Which approximations are better and why?

15. Repeat Exercise 11 using Maple with Digits set to 10.

16. Repeat Exercise 12 using Maple with Digits set to 10.

17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10−6.
Determine a bound for the step size for this table. What choice of step size would you make to ensure
that x = 10 is included in the table?

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use Lagrange interpolation to approximate the population in the years 1940, 1975,
and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28
days after birth. The first sample was reared on young oak leaves, whereas the second sample was
reared on mature leaves from the same tree.

a. Use Lagrange interpolation to approximate the average weight curve for each sample.

b. Find an approximate maximum average weight for each sample by determining the maximum
of the interpolating polynomial.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74
Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

20. In Exercise 26 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where erf(x) is
the normal distribution error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10−4 for erf(xi),
where xi = 0.2i, for i = 0, 1, . . . , 5.

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to erf( 1
3 ).

Which approach seems most feasible?

21. Prove Taylor’s Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let

g(t) = f (t)− P(t)− [f (x)− P(x)] · (t − x0)
n+1

(x − x0)n+1
,

where P is the nth Taylor polynomial, and use the Generalized Rolle’s Theorem 1.10.]
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22. Show that max
xj≤x≤xj+1

|g(x)| = h2/4, where g(x) = (x − jh)(x − (j + 1)h).

23. The Bernstein polynomial of degree n for f ∈ C[0, 1] is given by

Bn(x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
( n

k

)
denotes n!/k!(n − k)!. These polynomials can be used in a constructive proof of the

Weierstrass Approximation Theorem 3.1 (see [Bart]) because lim
n→∞Bn(x) = f (x), for each x ∈ [0, 1].

a. Find B3(x) for the functions
i. f (x) = x ii. f (x) = 1

b. Show that for each k ≤ n, (
n− 1

k − 1

)
=
(

k

n

)(
n

k

)
.

c. Use part (b) and the fact, from (ii) in part (a), that

1 =
n∑

k=0

(
n

k

)
xk(1− x)n−k , for each n,

to show that, for f (x) = x2,

Bn(x) =
(

n− 1

n

)
x2 + 1

n
x.

d. Use part (c) to estimate the value of n necessary for
∣∣Bn(x)− x2

∣∣ ≤ 10−6 to hold for all x in
[0, 1].

3.2 Data Approximation and Neville’s Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now illustrate a practical application of interpolation in
such a situation.

Illustration Table 3.2 lists values of a function f at various points. The approximations to f (1.5)
obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

The most appropriate linear polynomial uses x0 = 1.3 and x1 = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

P1(1.5) = (1.5− 1.6)

(1.3− 1.6)
f (1.3)+ (1.5− 1.3)

(1.6− 1.3)
f (1.6)

= (1.5− 1.6)

(1.3− 1.6)
(0.6200860)+ (1.5− 1.3)

(1.6− 1.3)
(0.4554022) = 0.5102968.

Two polynomials of degree 2 can reasonably be used, one with x0 = 1.3, x1 = 1.6, and
x2 = 1.9, which gives
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P2(1.5) = (1.5− 1.6)(1.5− 1.9)

(1.3− 1.6)(1.3− 1.9)
(0.6200860)+ (1.5− 1.3)(1.5− 1.9)

(1.6− 1.3)(1.6− 1.9)
(0.4554022)

+ (1.5− 1.3)(1.5− 1.6)

(1.9− 1.3)(1.9− 1.6)
(0.2818186) = 0.5112857,

and one with x0 = 1.0, x1 = 1.3, and x2 = 1.6, which gives P̂2(1.5) = 0.5124715.
In the third-degree case, there are also two reasonable choices for the polynomial. One

with x0 = 1.3, x1 = 1.6, x2 = 1.9, and x3 = 2.2, which gives P3(1.5) = 0.5118302.
The second third-degree approximation is obtained with x0 = 1.0, x1 = 1.3, x2 = 1.6,

and x3 = 1.9, which gives P̂3(1.5) = 0.5118127. The fourth-degree Lagrange polynomial
uses all the entries in the table. With x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is P4(1.5) = 0.5118200.

Because P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2 × 10−5 units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

|P1(1.5)− f (1.5)| ≈ 1.53× 10−3,

|P2(1.5)− f (1.5)| ≈ 5.42× 10−4,

|P̂2(1.5)− f (1.5)| ≈ 6.44× 10−4,

|P3(1.5)− f (1.5)| ≈ 2.5× 10−6,

|P̂3(1.5)− f (1.5)| ≈ 1.50× 10−5,

|P4(1.5)− f (1.5)| ≈ 7.7× 10−6.

Although P3(1.5) is the most accurate approximation, if we had no knowledge of the actual
value of f (1.5), we would accept P4(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be
applied here because we have no knowledge of the fourth derivative of f . Unfortunately,
this is generally the case. �

Neville’s Method

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply,
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,
and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4 Let f be a function defined at x0, x1, x2, . . . , xn, and suppose that m1, m2, . . ., mk are k
distinct integers, with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that agrees with
f (x) at the k points xm1 , xm2 , . . . , xmk is denoted Pm1,m2,...,mk (x).

Example 1 Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and f (x) = ex. Determine the
interpolating polynomial denoted P1,2,4(x), and use this polynomial to approximate f (5).
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Solution This is the Lagrange polynomial that agrees with f (x) at x1 = 2, x2 = 3, and
x4 = 6. Hence

P1,2,4(x) = (x − 3)(x − 6)

(2− 3)(2− 6)
e2 + (x − 2)(x − 6)

(3− 2)(3− 6)
e3 + (x − 2)(x − 3)

(6− 2)(6− 3)
e6.

So

f (5) ≈ P(5) = (5− 3)(5− 6)

(2− 3)(2− 6)
e2 + (5− 2)(5− 6)

(3− 2)(3− 6)
e3 + (5− 2)(5− 3)

(6− 2)(6− 3)
e6

=− 1

2
e2 + e3 + 1

2
e6 ≈ 218.105.

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Theorem 3.5 Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct numbers in this set. Then

P(x) = (x − xj)P0,1,...,j−1,j+1,...,k(x)− (x − xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)

is the kth Lagrange polynomial that interpolates f at the k + 1 points x0, x1, . . . , xk .

Proof For ease of notation, let Q ≡ P0,1,...,i−1,i+1,...,k and Q̂ ≡ P0,1,...,j−1,j+1,...,k . Since Q(x)
and Q̂(x) are polynomials of degree k − 1 or less, P(x) is of degree at most k.

First note that Q̂(xi) = f (xi), implies that

P(xi) = (xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
= (xi − xj)

(xi − xj)
f (xi) = f (xi).

Similarly, since Q(xj) = f (xj), we have P(xj) = f (xj).
In addition, if 0 ≤ r ≤ k and r is neither i nor j, then Q(xr) = Q̂(xr) = f (xr). So

P(xr) = (xr − xj)Q̂(xr)− (xr − xi)Q(xr)

xi − xj
= (xi − xj)

(xi − xj)
f (xr) = f (xr).

But, by definition, P0,1,...,k(x) is the unique polynomial of degree at most k that agrees with
f at x0, x1, . . . , xk . Thus, P ≡ P0,1,...,k .

Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

P0,1 = 1

x1 − x0
[(x − x0)P1 − (x − x1)P0], P1,2 = 1

x2 − x1
[(x − x1)P2 − (x − x2)P1],

P0,1,2 = 1

x2 − x0
[(x − x0)P1,2 − (x − x2)P0,1],

and so on. They are generated in the manner shown in Table 3.3, where each row is completed
before the succeeding rows are begun.
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Table 3.3 x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points xi with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.

Eric Harold Neville (1889–1961)
gave this modification of the
Lagrange formula in a paper
published in 1932.[N]

To avoid the multiple subscripts, we let Qi,j(x), for 0 ≤ j ≤ i, denote the interpolating
polynomial of degree j on the (j + 1) numbers xi−j, xi−j+1, . . . , xi−1, xi; that is,

Qi,j = Pi−j,i−j+1,...,i−1,i.

Using this notation provides the Q notation array in Table 3.4.

Table 3.4 x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

Example 2 Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville’s method to
the data by constructing a recursive table of the form shown in Table 3.4.

Table 3.5

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then Q0,0 = f (1.0),
Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and Q4,0 = f (2.2). These are the five
polynomials of degree zero (constants) that approximate f (1.5), and are the same as data
given in Table 3.5.

Calculating the first-degree approximation Q1,1(1.5) gives

Q1,1(1.5) = (x − x0)Q1,0 − (x − x1)Q0,0

x1 − x0

= (1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

1.3− 1.0

= 0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449.

Similarly,

Q2,1(1.5) = (1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

1.6− 1.3
= 0.5102968,

Q3,1(1.5) = 0.5132634, and Q4,1(1.5) = 0.5104270.
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The best linear approximation is expected to be Q2,1 because 1.5 is between x1 = 1.3
and x2 = 1.6.

In a similar manner, approximations using higher-degree polynomials are given by

Q2,2(1.5) = (1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

1.6− 1.0
= 0.5124715,

Q3,2(1.5) = 0.5112857, and Q4,2(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown in
Table 3.6.

Table 3.6 1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, Q4,4, was not sufficiently accurate, another node, x5, could
be selected, and another row added to the table:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose

value at 2.5 is −0.0483838, and the next row of approximations to f (1.5) is

2.5 − 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.
The NumericalAnalysis package in Maple can be used to apply Neville’s method for

the values of x and f (x) = y in Table 3.6. After loading the package we define the data
with

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
Neville’s method using this data gives the approximation at x = 1.5 with the command

p3 := PolynomialInterpolation(xy, method = neville, extrapolate = [1.5])
The output from Maple for this command is

POLYINTERP([[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]],
method = neville, extrapolate = [1.5], INFO)

which isn’t very informative. To display the information, we enter the command

NevilleTable(p3, 1.5)

and Maple returns an array with four rows and four columns. The nonzero entries corre-
sponding to the top four rows of Table 3.6 (with the first column deleted), the zero entries
are simply used to fill up the array.

To add the additional row to the table using the additional data (2.2, 0.1103623) we
use the command
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p3a := AddPoint(p3, [2.2, 0.1103623])
and a new array with all the approximation entries in Table 3.6 is obtained with

NevilleTable(p3a, 1.5)

Example 3 Table 3.7 lists the values of f (x) = ln x accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximatef (2.1) = ln 2.1 by completing the Neville
table.Table 3.7

i xi ln xi

0 2.0 0.6931
1 2.2 0.7885
2 2.3 0.8329

Solution Because x − x0 = 0.1, x − x1 = −0.1, x − x2 = −0.2, and we are given
Q0,0 = 0.6931, Q1,0 = 0.7885, and Q2,0 = 0.8329, we have

Q1,1 = 1

0.2
[(0.1)0.7885− (−0.1)0.6931] = 0.1482

0.2
= 0.7410

and

Q2,1 = 1

0.1
[(−0.1)0.8329− (−0.2)0.7885] = 0.07441

0.1
= 0.7441.

The final approximation we can obtain from this data is

Q2,1 = 1

0.3
[(0.1)0.7441− (−0.2)0.7410] = 0.2276

0.3
= 0.7420.

These values are shown in Table 3.8.

Table 3.8 i xi x − xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931
1 2.2 −0.1 0.7885 0.7410
2 2.3 −0.2 0.8329 0.7441 0.7420

In the preceding example we have f (2.1) = ln 2.1 = 0.7419 to four decimal places,
so the absolute error is

|f (2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4.

However, f ′(x) = 1/x, f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the Lagrange error formula
(3.3) in Theorem 3.3 gives the error bound

|f (2.1)− P2(2.1)| =
∣∣∣∣f ′′′(ξ(2.1))

3! (x − x0)(x − x1)(x − x2)

∣∣∣∣
=
∣∣∣∣ 1

3 (ξ(2.1))3
(0.1)(−0.1)(−0.2)

∣∣∣∣ ≤ 0.002

3(2)3
= 8.3× 10−5.

Notice that the actual error, 10−4, exceeds the error bound, 8.3× 10−5. This apparent
contradiction is a consequence of finite-digit computations. We used four-digit rounding
arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This
caused our actual errors to exceed the theoretical error estimate.

• Remember: You cannot expect more accuracy than the arithmetic provides.

Algorithm 3.1 constructs the entries in Neville’s method by rows.
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3.2 Data Approximation and Neville’s Method 123

ALGORITHM

3.1
Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n+ 1 distinct numbers x0, . . . , xn at the
number x for the function f :

INPUT numbers x, x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as the first column
Q0,0, Q1,0, . . . , Qn,0 of Q.

OUTPUT the table Q with P(x) = Qn,n.

Step 1 For i = 1, 2, . . . , n
for j = 1, 2, . . . , i

set Qi,j = (x − xi−j)Qi, j−1 − (x − xi)Qi−1, j−1

xi − xi−j
.

Step 2 OUTPUT (Q);
STOP.

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qi,i − Qi−1,i−1| < ε

can be used as a stopping criterion, where ε is a prescribed error tolerance. If the inequality is
true, Qi,i is a reasonable approximation to f (x). If the inequality is false, a new interpolation
point, xi+1, is added.

E X E R C I S E S E T 3.2

1. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

3. Use Neville’s method to approximate
√

3 with the following functions and values.

a. f (x) = 3x and the values x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

b. f (x) = √x and the values x0 = 0, x1 = 1, x2 = 2, x3 = 4, and x4 = 5.

c. Compare the accuracy of the approximation in parts (a) and (b).

4. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Use Neville’s
method to find y if P3(1.5) = 0.
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5. Neville’s method is used to approximate f (0.4), giving the following table.

x0 = 0 P0 = 1
x1 = 0.25 P1 = 2 P01 = 2.6
x2 = 0.5 P2 P1,2 P0,1,2

x3 = 0.75 P3 = 8 P2,3 = 2.4 P1,2,3 = 2.96 P0,1,2,3 = 3.016

Determine P2 = f (0.5).

6. Neville’s method is used to approximate f (0.5), giving the following table.

x0 = 0 P0 = 0
x1 = 0.4 P1 = 2.8 P0,1 = 3.5
x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f (0.7).

7. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x + 1, P0,2(x) = x + 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

8. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = x + 1, P1,2(x) = 3x − 1, and P1,2,3(1.5) = 4.

Find P0,1,2,3(1.5).

9. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

10. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was overstated by 2 and f (1) was understated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

11. Construct a sequence of interpolating values yn to f (1 + √10), where f (x) = (1 + x2)−1 for
−5 ≤ x ≤ 5, as follows: For each n = 1, 2, . . . , 10, let h = 10/n and yn = Pn(1+

√
10), where Pn(x)

is the interpolating polynomial for f (x) at the nodes x(n)0 , x(n)1 , . . . , x(n)n and x(n)j = −5 + jh, for each

j = 0, 1, 2, . . . , n. Does the sequence {yn} appear to converge to f (1+√10)?

Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) �= 0 on [a, b] and f has one zero p in [a, b].
Let x0, . . . , xn, be n + 1 distinct numbers in [a, b] with f (xk) = yk , for each k = 0, 1, . . . , n. To
approximate p construct the interpolating polynomial of degree n on the nodes y0, . . . , yn for f −1.
Since yk = f (xk) and 0 = f (p), it follows that f −1(yk) = xk and p = f −1(0). Using iterated
interpolation to approximate f −1(0) is called iterated inverse interpolation.

12. Use iterated inverse interpolation to find an approximation to the solution of x − e−x = 0, using the
data

x 0.3 0.4 0.5 0.6

e−x 0.740818 0.670320 0.606531 0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.
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Suppose that Pn(x) is the nth Lagrange polynomial that agrees with the function f at
the distinct numbers x0, x1, . . . , xn. Although this polynomial is unique, there are alternate
algebraic representations that are useful in certain situations. The divided differences of f
with respect to x0, x1, . . . , xn are used to express Pn(x) in the form

Pn(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)+ · · · + an(x − x0) · · · (x − xn−1), (3.5)

for appropriate constants a0, a1, . . . , an. To determine the first of these constants, a0, note
that if Pn(x) is written in the form of Eq. (3.5), then evaluating Pn(x) at x0 leaves only the
constant term a0; that is,

a0 = Pn(x0) = f (x0).

Similarly, when P(x) is evaluated at x1, the only nonzero terms in the evaluation of
Pn(x1) are the constant and linear terms,

f (x0)+ a1(x1 − x0) = Pn(x1) = f (x1);

so

a1 = f (x1)− f (x0)

x1 − x0
. (3.6)

As in so many areas, Isaac
Newton is prominent in the study
of difference equations. He
developed interpolation formulas
as early as 1675, using his �
notation in tables of differences.
He took a very general approach
to the difference formulas, so
explicit examples that he
produced, including Lagrange’s
formulas, are often known by
other names.

We now introduce the divided-difference notation, which is related to Aitken’s �2

notation used in Section 2.5. The zeroth divided difference of the function f with respect
to xi, denoted f [xi], is simply the value of f at xi:

f [xi] = f (xi). (3.7)

The remaining divided differences are defined recursively; the first divided difference
of f with respect to xi and xi+1 is denoted f [xi, xi+1] and defined as

f [xi, xi+1] = f [xi+1] − f [xi]
xi+1 − xi

. (3.8)

The second divided difference, f [xi, xi+1, xi+2], is defined as

f [xi, xi+1, xi+2] = f [xi+1, xi+2] − f [xi, xi+1]
xi+2 − xi

.

Similarly, after the (k − 1)st divided differences,

f [xi, xi+1, xi+2, . . . , xi+k−1] and f [xi+1, xi+2, . . . , xi+k−1, xi+k],
have been determined, the kth divided difference relative to xi, xi+1, xi+2, . . . , xi+k is

f [xi, xi+1, . . . , xi+k−1, xi+k] = f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]
xi+k − xi

. (3.9)

The process ends with the single nth divided difference,

f [x0, x1, . . . , xn] = f [x1, x2, . . . , xn] − f [x0, x1, . . . , xn−1]
xn − x0

.

Because of Eq. (3.6) we can write a1 = f [x0, x1], just as a0 can be expressed as a0 =
f (x0) = f [x0]. Hence the interpolating polynomial in Eq. (3.5) is

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ · · · + an(x − x0)(x − x1) · · · (x − xn−1).
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As might be expected from the evaluation of a0 and a1, the required constants are

ak = f [x0, x1, x2, . . . , xk],
for each k = 0, 1, . . . , n. So Pn(x) can be rewritten in a form called Newton’s Divided-
Difference:

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1). (3.10)

The value of f [x0, x1, . . . , xk] is independent of the order of the numbers x0, x1, . . . , xk , as
shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one
fifth difference can also be determined from these data.

Table 3.9

First Second Third
x f (x) divided differences divided differences divided differences

x0 f [x0]
f [x0, x1] = f [x1] − f [x0]

x1 − x0

x1 f [x1] f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

f [x1, x2] = f [x2] − f [x1]
x2 − x1

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

x2 f [x2] f [x1, x2, x3] = f [x2, x3] − f [x1, x2]
x3 − x1

f [x2, x3] = f [x3] − f [x2]
x3 − x2

f [x1, x2, x3, x4] = f [x2, x3, x4] − f [x1, x2, x3]
x4 − x1

x3 f [x3] f [x2, x3, x4] = f [x3, x4] − f [x2, x3]
x4 − x2

f [x3, x4] = f [x4] − f [x3]
x4 − x3

f [x2, x3, x4, x5] = f [x3, x4, x5] − f [x2, x3, x4]
x5 − x2

x4 f [x4] f [x3, x4, x5] = f [x4, x5] − f [x3, x4]
x5 − x3

f [x4, x5] = f [x5] − f [x4]
x5 − x4

x5 f [x5]

ALGORITHM

3.2
Newton’s Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)
distinct numbers x0, x1, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as F0,0, F1,0, . . . , Fn,0.

OUTPUT the numbers F0,0, F1,1, . . . , Fn,n where

Pn(x) = F0,0 +
n∑

i=1

Fi,i

i−1∏
j=0

(x − xj). (Fi,i is f [x0, x1, . . . , xi].)
Step 1 For i = 1, 2, . . . , n

For j = 1, 2, . . . , i

set Fi,j = Fi,j−1 − Fi−1,j−1

xi − xi−j
. (Fi,j = f [xi−j, . . . , xi].)

Step 2 OUTPUT (F0,0, F1,1, . . . , Fn,n);
STOP.
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The form of the output in Algorithm 3.2 can be modified to produce all the divided
differences, as shown in Example 1.

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and
reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.Table 3.10

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution The first divided difference involving x0 and x1 is

f [x0, x1] = f [x1] − f [x0]
x1 − x0

= 0.6200860− 0.7651977

1.3− 1.0
= −0.4837057.

The remaining first divided differences are found in a similar manner and are shown in the
fourth column in Table 3.11.

Table 3.11 i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, . . . , xi] f [xi−4, . . . , xi]
0 1.0 0.7651977

−0.4837057
1 1.3 0.6200860 −0.1087339

−0.5489460 0.0658784
2 1.6 0.4554022 −0.0494433 0.0018251

−0.5786120 0.0680685
3 1.9 0.2818186 0.0118183

−0.5715210
4 2.2 0.1103623

The second divided difference involving x0, x1, and x2 is

f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

= −0.5489460− (−0.4837057)

1.6− 1.0
= −0.1087339.

The remaining second divided differences are shown in the 5th column of Table 3.11.
The third divided difference involving x0, x1, x2, and x3 and the fourth divided difference
involving all the data points are, respectively,

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

= −0.0494433− (−0.1087339)

1.9− 1.0

= 0.0658784,

and

f [x0, x1, x2, x3, x4] = f [x1, x2, x3, x4] − f [x0, x1, x2, x3]
x4 − x0

= 0.0680685− 0.0658784

2.2− 1.0

= 0.0018251.

All the entries are given in Table 3.11.
The coefficients of the Newton forward divided-difference form of the interpolating

polynomial are along the diagonal in the table. This polynomial is

P4(x) = 0.7651977− 0.4837057(x − 1.0)− 0.1087339(x − 1.0)(x − 1.3)

+ 0.0658784(x − 1.0)(x − 1.3)(x − 1.6)

+ 0.0018251(x − 1.0)(x − 1.3)(x − 1.6)(x − 1.9).

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Table 3.6 for Example
2 of Section 3.2, as it must because the polynomials are the same.
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We can use Maple with the NumericalAnalysis package to create the Newton Divided-
Difference table. First load the package and define the x and f (x) = y values that will be
used to generate the first four rows of Table 3.11.

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
The command to create the divided-difference table is

p3 := PolynomialInterpolation(xy, independentvar = ‘x’, method = newton)

A matrix containing the divided-difference table as its nonzero entries is created with the

DividedDifferenceTable(p3)

We can add another row to the table with the command

p4 := AddPoint(p3, [2.2, 0.1103623])
which produces the divided-difference table with entries corresponding to those in
Table 3.11.

The Newton form of the interpolation polynomial is created with

Interpolant(p4)

which produces the polynomial in the form of P4(x) in Example 1, except that in place of
the first two terms of P4(x):

0.7651977− 0.4837057(x − 1.0)

Maple gives this as 1.248903367− 0.4837056667x.
The Mean Value Theorem 1.8 applied to Eq. (3.8) when i = 0,

f [x0, x1] = f (x1)− f (x0)

x1 − x0
,

implies that when f ′ exists, f [x0, x1] = f ′(ξ) for some number ξ between x0 and x1. The
following theorem generalizes this result.

Theorem 3.6 Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct numbers in [a, b]. Then a number ξ
exists in (a, b) with

f [x0, x1, . . . , xn] = f (n)(ξ)

n! .

Proof Let

g(x) = f (x)− Pn(x).

Since f (xi) = Pn(xi) for each i = 0, 1, . . . , n, the function g has n+1 distinct zeros in [a, b].
Generalized Rolle’s Theorem 1.10 implies that a number ξ in (a, b) exists with g(n)(ξ) = 0,
so

0 = f (n)(ξ)− P(n)n (ξ).

Since Pn(x) is a polynomial of degree n whose leading coefficient is f [x0, x1, . . . , xn],
P(n)n (x) = n!f [x0, x1, . . . , xn],

for all values of x. As a consequence,

f [x0, x1, . . . , xn] = f (n)(ξ)

n! .
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Newton’s divided-difference formula can be expressed in a simplified form when the
nodes are arranged consecutively with equal spacing. In this case, we introduce the notation
h = xi+1 − xi, for each i = 0, 1, . . . , n − 1 and let x = x0 + sh. Then the difference x − xi

is x − xi = (s− i)h. So Eq. (3.10) becomes

Pn(x) = Pn(x0 + sh) = f [x0] + shf [x0, x1] + s(s− 1)h2f [x0, x1, x2]
+ · · · + s(s− 1) · · · (s− n+ 1)hnf [x0, x1, . . . , xn]

= f [x0] +
n∑

k=1

s(s− 1) · · · (s− k + 1)hkf [x0, x1, . . . , xk].

Using binomial-coefficient notation,(
s

k

)
= s(s− 1) · · · (s− k + 1)

k! ,

we can express Pn(x) compactly as

Pn(x) = Pn(x0 + sh) = f [x0] +
n∑

k=1

(
s

k

)
k!hkf [x0, xi, . . . , xk]. (3.11)

Forward Differences

The Newton forward-difference formula, is constructed by making use of the forward
difference notation � introduced in Aitken’s �2 method. With this notation,

f [x0, x1] = f (x1)− f (x0)

x1 − x0
= 1

h
(f (x1)− f (x0)) = 1

h
�f (x0)

f [x0, x1, x2] = 1

2h

[
�f (x1)−�f (x0)

h

]
= 1

2h2
�2f (x0),

and, in general,

f [x0, x1, . . . , xk] = 1

k!hk
�kf (x0).

Since f [x0] = f (x0), Eq. (3.11) has the following form.

Newton Forward-Difference Formula

Pn(x) = f (x0)+
n∑

k=1

(
s

k

)
�kf (x0) (3.12)

Backward Differences

If the interpolating nodes are reordered from last to first as xn, xn−1, . . . , x0, we can write
the interpolatory formula as

Pn(x) = f [xn] + f [xn, xn−1](x − xn)+ f [xn, xn−1, xn−2](x − xn)(x − xn−1)

+ · · · + f [xn, . . . , x0](x − xn)(x − xn−1) · · · (x − x1).
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130 C H A P T E R 3 Interpolation and Polynomial Approximation

If, in addition, the nodes are equally spaced with x = xn+ sh and x = xi+ (s+n− i)h,
then

Pn(x) = Pn(xn + sh)

= f [xn] + shf [xn, xn−1] + s(s+ 1)h2f [xn, xn−1, xn−2] + · · ·
+ s(s+ 1) · · · (s+ n− 1)hnf [xn, . . . , x0].

This is used to derive a commonly applied formula known as the Newton backward-
difference formula. To discuss this formula, we need the following definition.

Definition 3.7 Given the sequence {pn}∞n=0, define the backward difference ∇pn (read nabla pn) by

∇pn = pn − pn−1, for n ≥ 1.

Higher powers are defined recursively by

∇kpn = ∇(∇k−1pn), for k ≥ 2.

Definition 3.7 implies that

f [xn, xn−1] = 1

h
∇f (xn), f [xn, xn−1, xn−2] = 1

2h2
∇2f (xn),

and, in general,

f [xn, xn−1, . . . , xn−k] = 1

k!hk
∇kf (xn).

Consequently,

Pn(x) = f [xn] + s∇f (xn)+ s(s+ 1)

2
∇2f (xn)+ · · · + s(s+ 1) · · · (s+ n− 1)

n! ∇nf (xn).

If we extend the binomial coefficient notation to include all real values of s by letting

(−s

k

)
= −s(−s− 1) · · · (−s− k + 1)

k! = (−1)k
s(s+ 1) · · · (s+ k − 1)

k! ,

then

Pn(x) = f [xn]+(−1)1
(−s

1

)
∇f (xn)+(−1)2

(−s

2

)
∇2f (xn)+· · ·+(−1)n

(−s

n

)
∇nf (xn).

This gives the following result.

Newton Backward–Difference Formula

Pn(x) = f [xn] +
n∑

k=1

(−1)k
(−s

k

)
∇kf (xn) (3.13)
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Illustration The divided-difference Table 3.12 corresponds to the data in Example 1.

Table 3.12
First divided Second divided Third divided Fourth divided
differences differences differences differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433
��������
0.0018251

−0.5786120
���������
0.0680685

1.9 0.2818186
��������
0.0118183

����������
−0.5715210

2.2
��������
0.1103623

Only one interpolating polynomial of degree at most 4 uses these five data points, but we
will organize the data points to obtain the best interpolation approximations of degrees 1,
2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for the
given value of x.

If an approximation to f (1.1) is required, the reasonable choice for the nodes would
be x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2 since this choice makes the
earliest possible use of the data points closest to x = 1.1, and also makes use of the fourth
divided difference. This implies that h = 0.3 and s = 1

3 , so the Newton forward divided-
difference formula is used with the divided differences that have a solid underline ( ) in
Table 3.12:

P4(1.1) = P4(1.0+ 1

3
(0.3))

= 0.7651977+ 1

3
(0.3)(−0.4837057)+ 1

3

(
−2

3

)
(0.3)2(−0.1087339)

+ 1

3

(
−2

3

)(
−5

3

)
(0.3)3(0.0658784)

+ 1

3

(
−2

3

)(
−5

3

)(
−8

3

)
(0.3)4(0.0018251)

= 0.7196460.

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we
would again like to make the earliest use of the data points closest to x. This requires using
the Newton backward divided-difference formula with s = − 2

3 and the divided differences
in Table 3.12 that have a wavy underline (

����
). Notice that the fourth divided difference

is used in both formulas.

P4(2.0) = P4

(
2.2− 2

3
(0.3)

)

= 0.1103623− 2

3
(0.3)(−0.5715210)− 2

3

(
1

3

)
(0.3)2(0.0118183)

− 2

3

(
1

3

)(
4

3

)
(0.3)3(0.0680685)− 2

3

(
1

3

)(
4

3

)(
7

3

)
(0.3)4(0.0018251)

= 0.2238754. �
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Centered Differences

The Newton forward- and backward-difference formulas are not appropriate for approximat-
ing f (x)when x lies near the center of the table because neither will permit the highest-order
difference to have x0 close to x. A number of divided-difference formulas are available for
this case, each of which has situations when it can be used to maximum advantage. These
methods are known as centered-difference formulas. We will consider only one centered-
difference formula, Stirling’s method.

For the centered-difference formulas, we choose x0 near the point being approximated
and label the nodes directly below x0 as x1, x2, . . . and those directly above as x−1, x−2, . . . .
With this convention, Stirling’s formula is given by

Pn(x) = P2m+1(x) = f [x0] + sh

2
(f [x−1, x0] + f [x0, x1])+ s2h2f [x−1, x0, x1] (3.14)

+ s(s2 − 1)h3

2
f [x−2, x−1, x0, x1] + f [x−1, x0, x1, x2])

+ · · · + s2(s2 − 1)(s2 − 4) · · · (s2 − (m− 1)2)h2mf [x−m, . . . , xm]

+ s(s2 − 1) · · · (s2 − m2)h2m+1

2
(f [x−m−1, . . . , xm] + f [x−m, . . . , xm+1]),

if n = 2m + 1 is odd. If n = 2m is even, we use the same formula but delete the last line.
The entries used for this formula are underlined in Table 3.13.

James Stirling (1692–1770)
published this and numerous
other formulas in Methodus
Differentialis in 1720.
Techniques for accelerating the
convergence of various series are
included in this work.

Table 3.13 First divided Second divided Third divided Fourth divided
x f (x) differences differences differences differences

x−2 f [x−2]
f [x−2, x−1]

x−1 f [x−1] f [x−2, x−1, x0]
f [x−1, x0] f [x−2, x−1, x0, x1]

x0 f [x0] f [x−1, x0, x1] f [x−2, x−1, x0, x1, x2]
f [x0, x1] f [x−1, x0, x1, x2]

x1 f [x1] f [x0, x1, x2]
f [x1, x2]

x2 f [x2]

Example 2 Consider the table of data given in the previous examples. Use Stirling’s formula to approx-
imate f (1.5) with x0 = 1.6.

Solution To apply Stirling’s formula we use the underlined entries in the difference
Table 3.14.

Table 3.14 First divided Second divided Third divided Fourth divided
x f (x) differences differences differences differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433 0.0018251
−0.5786120 0.0680685

1.9 0.2818186 0.0118183
−0.5715210

2.2 0.1103623
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3.3 Divided Differences 133

The formula, with h = 0.3, x0 = 1.6, and s = − 1
3 , becomes

f (1.5) ≈ P4

(
1.6+

(
−1

3

)
(0.3)

)

= 0.4554022+
(
−1

3

)(
0.3

2

)
((−0.5489460)+ (−0.5786120))

+
(
−1

3

)2

(0.3)2(−0.0494433)

+ 1

2

(
−1

3

)((
−1

3

)2

− 1

)
(0.3)3(0.0658784+ 0.0680685)

+
(
−1

3

)2
((
−1

3

)2

− 1

)
(0.3)4(0.0018251) = 0.5118200.

Most texts on numerical analysis written before the wide-spread use of computers have
extensive treatments of divided-difference methods. If a more comprehensive treatment of
this subject is needed, the book by Hildebrand [Hild] is a particularly good reference.

E X E R C I S E S E T 3.3

1. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

3. Use Newton the forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

b. f (0.25) if f (0.1) = −0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

4. Use the Newton forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

5. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (−1/3) if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,
f (0) = 1.10100000

b. f (0.25) if f (0.1) = −0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440
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134 C H A P T E R 3 Interpolation and Polynomial Approximation

6. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree three for the unequally
spaced points given in the following table:

x f (x)

−0.1 5.30000
0.0 2.00000
0.2 3.19000
0.3 1.00000

b. Add f (0.35) = 0.97260 to the table, and construct the interpolating polynomial of degree four.

8. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the unequally
spaced points given in the following table:

x f (x)

0.0 −6.00000
0.1 −5.89483
0.3 −5.65014
0.6 −5.17788
1.0 −4.28172

b. Add f (1.1) = −3.99583 to the table, and construct the interpolating polynomial of degree five.

9. a. Approximate f (0.05) using the following data and the Newton forward-difference formula:

x 0.0 0.2 0.4 0.6 0.8

f (x) 1.00000 1.22140 1.49182 1.82212 2.22554

b. Use the Newton backward-difference formula to approximate f (0.65).

c. Use Stirling’s formula to approximate f (0.43).

10. Show that the polynomial interpolating the following data has degree 3.

x −2 −1 0 1 2 3

f (x) 1 4 11 16 13 −4

11. a. Show that the cubic polynomials

P(x) = 3− 2(x + 1)+ 0(x + 1)(x)+ (x + 1)(x)(x − 1)

and

Q(x) = −1+ 4(x + 2)− 3(x + 2)(x + 1)+ (x + 2)(x + 1)(x)

both interpolate the data

x −2 −1 0 1 2

f (x) −1 3 1 −1 3

b. Why does part (a) not violate the uniqueness property of interpolating polynomials?

12. A fourth-degree polynomial P(x) satisfies �4P(0) = 24, �3P(0) = 6, and �2P(0) = 0, where
�P(x) = P(x + 1)− P(x). Compute �2P(10).
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13. The following data are given for a polynomial P(x) of unknown degree.

x 0 1 2

P(x) 2 −1 4

Determine the coefficient of x2 in P(x) if all third-order forward differences are 1.

14. The following data are given for a polynomial P(x) of unknown degree.

x 0 1 2 3

P(x) 4 9 15 18

Determine the coefficient of x3 in P(x) if all fourth-order forward differences are 1.

15. The Newton forward-difference formula is used to approximate f (0.3) given the following data.

x 0.0 0.2 0.4 0.6

f (x) 15.0 21.0 30.0 51.0

Suppose it is discovered that f (0.4) was understated by 10 and f (0.6) was overstated by 5. By what
amount should the approximation to f (0.3) be changed?

16. For a function f , the Newton divided-difference formula gives the interpolating polynomial

P3(x) = 1+ 4x + 4x(x − 0.25)+ 16

3
x(x − 0.25)(x − 0.5),

on the nodes x0 = 0, x1 = 0.25, x2 = 0.5 and x3 = 0.75. Find f (0.75).

17. For a function f , the forward-divided differences are given by

x0 = 0.0 f [x0]
f [x0, x1]

x1 = 0.4 f [x1] f [x0, x1, x2] = 50
7

f [x1, x2] = 10
x2 = 0.7 f [x2] = 6

Determine the missing entries in the table.

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use appropriate divided differences to approximate the population in the years
1940, 1975, and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. Given

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ a3(x − x0)(x − x1)(x − x2)+ · · ·
+ an(x − x0)(x − x1) · · · (x − xn−1),

use Pn(x2) to show that a2 = f [x0, x1, x2].
20. Show that

f [x0, x1, . . . , xn, x] = f (n+1)(ξ(x))

(n+ 1)! ,

for some ξ(x). [Hint: From Eq. (3.3),

f (x) = Pn(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0) · · · (x − xn).
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Considering the interpolation polynomial of degree n+ 1 on x0, x1, . . . , xn, x, we have

f (x) = Pn+1(x) = Pn(x)+ f [x0, x1, . . . , xn, x](x − x0) · · · (x − xn).]
21. Let i0, i1, . . . , in be a rearrangement of the integers 0, 1, . . . , n. Show that f [xi0 , xi1 , . . ., xin ] =

f [x0, x1, . . ., xn]. [Hint: Consider the leading coefficient of the nth Lagrange polynomial on the
data {x0, x1, . . . , xn} = {xi0 , xi1 , . . . , xin }.]

3.4 Hermite Interpolation

Osculating polynomials generalize both the Taylor polynomials and the Lagrange polyno-
mials. Suppose that we are given n+ 1 distinct numbers x0, x1, . . . , xn in [a, b] and nonneg-
ative integers m0, m1, . . . , mn, and m = max{m0, m1, . . . , mn}. The osculating polynomial
approximating a function f ∈ Cm[a, b] at xi, for each i = 0, . . . , n, is the polynomial of
least degree that has the same values as the function f and all its derivatives of order less
than or equal to mi at each xi. The degree of this osculating polynomial is at most

M =
n∑

i=0

mi + n

because the number of conditions to be satisfied is
∑n

i=0 mi + (n+ 1), and a polynomial of
degree M has M + 1 coefficients that can be used to satisfy these conditions.

The Latin word osculum, literally
a “small mouth” or “kiss”, when
applied to a curve indicates that it
just touches and has the same
shape. Hermite interpolation has
this osculating property. It
matches a given curve, and its
derivative forces the interpolating
curve to “kiss” the given curve.

Definition 3.8 Let x0, x1, . . . , xn be n + 1 distinct numbers in [a, b] and for i = 0, 1, . . . , n let mi be a
nonnegative integer. Suppose that f ∈ Cm[a, b], where m = max0≤i≤n mi.

The osculating polynomial approximating f is the polynomial P(x) of least degree
such that

dkP(xi)

dxk
= dkf (xi)

dxk
, for each i = 0, 1, . . . , n and k = 0, 1, . . . , mi.

Note that when n = 0, the osculating polynomial approximating f is the m0th Taylor
polynomial for f at x0. When mi = 0 for each i, the osculating polynomial is the nth
Lagrange polynomial interpolating f on x0, x1, . . . , xn.

Charles Hermite (1822–1901)
made significant mathematical
discoveries throughout his life in
areas such as complex analysis
and number theory, particularly
involving the theory of equations.
He is perhaps best known for
proving in 1873 that e is
transcendental, that is, it is not
the solution to any algebraic
equation having integer
coefficients. This lead in 1882 to
Lindemann’s proof that π is also
transcendental, which
demonstrated that it is impossible
to use the standard geometry
tools of Euclid to construct a
square that has the same area as a
unit circle.

Hermite Polynomials

The case when mi = 1, for each i = 0, 1, . . . , n, gives the Hermite polynomials. For a given
function f , these polynomials agree with f at x0, x1, . . . , xn. In addition, since their first
derivatives agree with those of f , they have the same “shape” as the function at (xi, f (xi)) in
the sense that the tangent lines to the polynomial and the function agree. We will restrict our
study of osculating polynomials to this situation and consider first a theorem that describes
precisely the form of the Hermite polynomials.

Theorem 3.9 If f ∈ C1[a, b] and x0, . . . , xn ∈ [a, b] are distinct, the unique polynomial of least degree
agreeing with f and f ′ at x0, . . . , xn is the Hermite polynomial of degree at most 2n + 1
given by

H2n+1(x) =
n∑

j=0

f (xj)Hn, j(x)+
n∑

j=0

f ′(xj)Ĥn, j(x),
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3.4 Hermite Interpolation 137

where, for Ln, j(x) denoting the jth Lagrange coefficient polynomial of degree n, we have

Hn, j(x) = [1− 2(x − xj)L
′
n, j(xj)]L2

n, j(x) and Ĥn, j(x) = (x − xj)L
2
n, j(x).

Hermite gave a description of a
general osculatory polynomial in
a letter to Carl W. Borchardt in
1878, to whom he regularly sent
his new results. His
demonstration is an interesting
application of the use of complex
integration techniques to solve a
real-valued problem.

Moreover, if f ∈ C2n+2[a, b], then

f (x) = H2n+1(x)+ (x − x0)
2 . . . (x − xn)

2

(2n+ 2)! f (2n+2)(ξ(x)),

for some (generally unknown) ξ(x) in the interval (a, b).

Proof First recall that

Ln, j(xi) =
{

0, if i �= j,

1, if i = j.

Hence when i �= j,

Hn, j(xi) = 0 and Ĥn, j(xi) = 0,

whereas, for each i,

Hn,i(xi) = [1− 2(xi − xi)L
′
n,i(xi)] · 1 = 1 and Ĥn,i(xi) = (xi − xi) · 12 = 0.

As a consequence

H2n+1(xi) =
n∑

j=0
j �=i

f (xj) · 0+ f (xi) · 1+
n∑

j=0

f ′(xj) · 0 = f (xi),

so H2n+1 agrees with f at x0, x1, . . . , xn.
To show the agreement of H ′2n+1 with f ′ at the nodes, first note that Ln, j(x) is a factor

of H ′n, j(x), so H ′n, j(xi) = 0 when i �= j. In addition, when i = j we have Ln,i(xi) = 1, so

H ′n,i(xi) = −2L′n,i(xi) · L2
n,i(xi)+ [1− 2(xi − xi)L

′
n,i(xi)]2Ln,i(xi)L

′
n,i(xi)

= −2L′n,i(xi)+ 2L′n,i(xi) = 0.

Hence, H ′n, j(xi) = 0 for all i and j.

Finally,

Ĥ ′n, j(xi) = L2
n, j(xi)+ (xi − xj)2Ln, j(xi)L

′
n, j(xi)

= Ln, j(xi)[Ln, j(xi)+ 2(xi − xj)L
′
n, j(xi)],

so Ĥ ′n, j(xi) = 0 if i �= j and Ĥ ′n,i(xi) = 1. Combining these facts, we have

H ′2n+1(xi) =
n∑

j=0

f (xj) · 0+
n∑

j=0
j �=i

f ′(xj) · 0+ f ′(xi) · 1 = f ′(xi).

Therefore, H2n+1 agrees with f and H ′2n+1 with f ′ at x0, x1, . . . , xn.
The uniqueness of this polynomial and the error formula are considered in

Exercise 11.
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138 C H A P T E R 3 Interpolation and Polynomial Approximation

Example 1 Use the Hermite polynomial that agrees with the data listed in Table 3.15 to find an approx-
imation of f (1.5).

Table 3.15 k xk f (xk) f ′(xk)

0 1.3 0.6200860 −0.5220232
1 1.6 0.4554022 −0.5698959
2 1.9 0.2818186 −0.5811571

Solution We first compute the Lagrange polynomials and their derivatives. This gives

L2,0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
= 50

9
x2 − 175

9
x + 152

9
, L′2,0(x) =

100

9
x − 175

9
;

L2,1(x) = (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
= −100

9
x2 + 320

9
x − 247

9
, L′2,1(x) =

−200

9
x + 320

9
;

and

L2,2 = (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
= 50

9
x2 − 145

9
x + 104

9
, L′2,2(x) =

100

9
x − 145

9
.

The polynomials H2,j(x) and Ĥ2,j(x) are then

H2,0(x) = [1− 2(x − 1.3)(−5)]
(

50

9
x2 − 175

9
x + 152

9

)2

= (10x − 12)

(
50

9
x2 − 175

9
x + 152

9

)2

,

H2,1(x) = 1 ·
(−100

9
x2 + 320

9
x − 247

9

)2

,

H2,2(x) = 10(2− x)

(
50

9
x2 − 145

9
x + 104

9

)2

,

Ĥ2,0(x) = (x − 1.3)

(
50

9
x2 − 175

9
x + 152

9

)2

,

Ĥ2,1(x) = (x − 1.6)

(−100

9
x2 + 320

9
x − 247

9

)2

,

and

Ĥ2,2(x) = (x − 1.9)

(
50

9
x2 − 145

9
x + 104

9

)2

.

Finally

H5(x) = 0.6200860H2,0(x)+ 0.4554022H2,1(x)+ 0.2818186H2,2(x)

− 0.5220232Ĥ2,0(x)− 0.5698959Ĥ2,1(x)− 0.5811571Ĥ2,2(x)
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3.4 Hermite Interpolation 139

and

H5(1.5) = 0.6200860

(
4

27

)
+ 0.4554022

(
64

81

)
+ 0.2818186

(
5

81

)

− 0.5220232

(
4

405

)
− 0.5698959

(−32

405

)
− 0.5811571

(−2

405

)

= 0.5118277,

a result that is accurate to the places listed.

Although Theorem 3.9 provides a complete description of the Hermite polynomials, it
is clear from Example 1 that the need to determine and evaluate the Lagrange polynomials
and their derivatives makes the procedure tedious even for small values of n.

Hermite Polynomials Using Divided Differences

There is an alternative method for generating Hermite approximations that has as its basis
the Newton interpolatory divided-difference formula (3.10) at x0, x1, . . . , xn, that is,

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1).

The alternative method uses the connection between the nth divided difference and the nth
derivative of f , as outlined in Theorem 3.6 in Section 3.3.

Suppose that the distinct numbers x0, x1, . . . , xn are given together with the values of
f and f ′ at these numbers. Define a new sequence z0, z1, . . . , z2n+1 by

z2i = z2i+1 = xi, for each i = 0, 1, . . . , n,

and construct the divided difference table in the form of Table 3.9 that uses z0, z1, . . ., z2n+1.
Since z2i = z2i+1 = xi for each i, we cannot define f [z2i, z2i+1] by the divided difference

formula. However, if we assume, based on Theorem 3.6, that the reasonable substitution in
this situation is f [z2i, z2i+1] = f ′(z2i) = f ′(xi), we can use the entries

f ′(x0), f
′(x1), . . . , f

′(xn)

in place of the undefined first divided differences

f [z0, z1], f [z2, z3], . . . , f [z2n, z2n+1].
The remaining divided differences are produced as usual, and the appropriate divided differ-
ences are employed in Newton’s interpolatory divided-difference formula. Table 3.16 shows
the entries that are used for the first three divided-difference columns when determining
the Hermite polynomial H5(x) for x0, x1, and x2. The remaining entries are generated in the
same manner as in Table 3.9. The Hermite polynomial is then given by

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk](x − z0)(x − z1) · · · (x − zk−1).

A proof of this fact can be found in [Pow], p. 56.
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140 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.16 First divided Second divided
z f (z) differences differences

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2] = f [z1, z2] − f [z0, z1]
z2 − z0

f [z1, z2] = f [z2] − f [z1]
z2 − z1

z2 = x1 f [z2] = f (x1) f [z1, z2, z3] = f [z2, z3] − f [z1, z2]
z3 − z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1) f [z2, z3, z4] = f [z3, z4] − f [z2, z3]
z4 − z2

f [z3, z4] = f [z4] − f [z3]
z4 − z3

z4 = x2 f [z4] = f (x2) f [z3, z4, z5] = f [z4, z5] − f [z3, z4]
z5 − z3

f [z4, z5] = f ′(x2)

z5 = x2 f [z5] = f (x2)

Example 2 Use the data given in Example 1 and the divided difference method to determine the Hermite
polynomial approximation at x = 1.5.

Solution The underlined entries in the first three columns of Table 3.17 are the data given
in Example 1. The remaining entries in this table are generated by the standard divided-
difference formula (3.9).

For example, for the second entry in the third column we use the second 1.3 entry in
the second column and the first 1.6 entry in that column to obtain

0.4554022− 0.6200860

1.6− 1.3
= −0.5489460.

For the first entry in the fourth column we use the first 1.3 entry in the third column and the
first 1.6 entry in that column to obtain

−0.5489460− (−0.5220232)

1.6− 1.3
= −0.0897427.

The value of the Hermite polynomial at 1.5 is

H5(1.5) = f [1.3] + f ′(1.3)(1.5− 1.3)+ f [1.3, 1.3, 1.6](1.5− 1.3)2

+ f [1.3, 1.3, 1.6, 1.6](1.5− 1.3)2(1.5− 1.6)

+ f [1.3, 1.3, 1.6, 1.6, 1.9](1.5− 1.3)2(1.5− 1.6)2

+ f [1.3, 1.3, 1.6, 1.6, 1.9, 1.9](1.5− 1.3)2(1.5− 1.6)2(1.5− 1.9)

= 0.6200860+ (−0.5220232)(0.2)+ (−0.0897427)(0.2)2

+ 0.0663657(0.2)2(−0.1)+ 0.0026663(0.2)2(−0.1)2

+ (−0.0027738)(0.2)2(−0.1)2(−0.4)

= 0.5118277.
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Table 3.17 1.3 0.6200860
−0.5220232

1.3 0.6200860 −0.0897427
−0.5489460 0.0663657

1.6 0.4554022 −0.0698330 0.0026663
−0.5698959 0.0679655 −0.0027738

1.6 0.4554022 −0.0290537 0.0010020
−0.5786120 0.0685667

1.9 0.2818186 −0.0084837
−0.5811571

1.9 0.2818186

The technique used in Algorithm 3.3 can be extended for use in determining other
osculating polynomials. A concise discussion of the procedures can be found in [Pow],
pp. 53–57.

ALGORITHM

3.3
Hermite Interpolation

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1)
distinct numbers x0, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), . . . , f (xn) and f ′(x0), . . ., f ′(xn).

OUTPUT the numbers Q0,0, Q1,1, . . . , Q2n+1,2n+1 where

H(x) = Q0,0 + Q1,1(x − x0)+ Q2,2(x − x0)
2 + Q3,3(x − x0)

2(x − x1)

+Q4,4(x − x0)
2(x − x1)

2 + · · ·
+Q2n+1,2n+1(x − x0)

2(x − x1)
2 · · · (x − xn−1)

2(x − xn).

Step 1 For i = 0, 1, . . . , n do Steps 2 and 3.

Step 2 Set z2i = xi;
z2i+1 = xi;
Q2i,0 = f (xi);
Q2i+1,0 = f (xi);
Q2i+1,1 = f ′(xi).

Step 3 If i �= 0 then set

Q2i,1 = Q2i,0 − Q2i−1,0

z2i − z2i−1
.

Step 4 For i = 2, 3, . . . , 2n+ 1

for j = 2, 3, . . . , i set Qi, j = Qi, j−1 − Qi−1, j−1

zi − zi−j
.

Step 5 OUTPUT (Q0,0, Q1,1, . . . , Q2n+1,2n+1);
STOP

The NumericalAnalysis package in Maple can be used to construct the Hermite coef-
ficients. We first need to load the package and to define the data that is being used, in this
case, xi, f (xi), and f ′(xi) for i = 0, 1, . . . , n. This is done by presenting the data in the form
[xi, f (xi), f ′(xi)]. For example, the data for Example 2 is entered as

xy := [[1.3, 0.6200860,−0.5220232], [1.6, 0.4554022,−0.5698959],
[1.9, 0.2818186,−0.5811571]]
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142 C H A P T E R 3 Interpolation and Polynomial Approximation

Then the command

h5 := PolynomialInterpolation(xy, method = hermite, independentvar = ′x′)
produces an array whose nonzero entries correspond to the values in Table 3.17. The Hermite
interpolating polynomial is created with the command

Interpolant(h5))

This gives the polynomial in (almost) Newton forward-difference form

1.29871616− 0.5220232x − 0.08974266667(x− 1.3)2 + 0.06636555557(x−1.3)2(x − 1.6)
+ 0.002666666633(x − 1.3)2(x − 1.6)2 − 0.002774691277(x − 1.3)2(x − 1.6)2(x − 1.9)

If a standard representation of the polynomial is needed, it is found with

expand(Interpolant(h5))

giving the Maple response

1.001944063− 0.0082292208x − 0.2352161732x2 − 0.01455607812x3

+ 0.02403178946x4 − 0.002774691277x5

E X E R C I S E S E T 3.4

1. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.

a. x f (x) f ′(x)

8.3 17.56492 3.116256
8.6 18.50515 3.151762

b. x f (x) f ′(x)

0.8 0.22363362 2.1691753
1.0 0.65809197 2.0466965

c. x f (x) f ′(x)

−0.5 −0.0247500 0.7510000
−0.25 0.3349375 2.1890000

0 1.1010000 4.0020000

d. x f (x) f ′(x)

0.1 −0.62049958 3.58502082
0.2 −0.28398668 3.14033271
0.3 0.00660095 2.66668043
0.4 0.24842440 2.16529366

2. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.
a. x f (x) f ′(x)

0 1.00000 2.00000
0.5 2.71828 5.43656

b. x f (x) f ′(x)

−0.25 1.33203 0.437500
0.25 0.800781 −0.625000

c. x f (x) f ′(x)

0.1 −0.29004996 −2.8019975
0.2 −0.56079734 −2.6159201
0.3 −0.81401972 −2.9734038

d. x f (x) f ′(x)

−1 0.86199480 0.15536240
−0.5 0.95802009 0.23269654

0 1.0986123 0.33333333
0.5 1.2943767 0.45186776

3. The data in Exercise 1 were generated using the following functions. Use the polynomials constructed
in Exercise 1 for the given value of x to approximate f (x), and calculate the absolute error.

a. f (x) = x ln x; approximate f (8.4).

b. f (x) = sin(ex − 2); approximate f (0.9).

c. f (x) = x3 + 4.001x2 + 4.002x + 1.101; approximate f (−1/3).

d. f (x) = x cos x − 2x2 + 3x − 1; approximate f (0.25).
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4. The data in Exercise 2 were generated using the following functions. Use the polynomials constructed
in Exercise 2 for the given value of x to approximate f (x), and calculate the absolute error.

a. f (x) = e2x; approximate f (0.43).

b. f (x) = x4 − x3 + x2 − x + 1; approximate f (0).

c. f (x) = x2 cos x − 3x; approximate f (0.18).

d. f (x) = ln(ex + 2); approximate f (0.25).

5. a. Use the following values and five-digit rounding arithmetic to construct the Hermite interpolating
polynomial to approximate sin 0.34.

x sin x Dx sin x = cos x

0.30 0.29552 0.95534
0.32 0.31457 0.94924
0.35 0.34290 0.93937

b. Determine an error bound for the approximation in part (a), and compare it to the actual error.

c. Add sin 0.33 = 0.32404 and cos 0.33 = 0.94604 to the data, and redo the calculations.

6. Let f (x) = 3xex − e2x .

a. Approximate f (1.03) by the Hermite interpolating polynomial of degree at most three using
x0 = 1 and x1 = 1.05. Compare the actual error to the error bound.

b. Repeat (a) with the Hermite interpolating polynomial of degree at most five, using x0 = 1,
x1 = 1.05, and x2 = 1.07.

7. Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 3.

8. Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 4.

9. The following table lists data for the function described by f (x) = e0.1x2
. Approximate f (1.25) by

using H5(1.25) and H3(1.25), where H5 uses the nodes x0 = 1, x1 = 2, and x2 = 3; and H3 uses the
nodes x̄0 = 1 and x̄1 = 1.5. Find error bounds for these approximations.

x f (x) = e0.1x2
f ′(x) = 0.2xe0.1x2

x0 = x0 = 1 1.105170918 0.2210341836
x̄1 = 1.5 1.252322716 0.3756968148
x1 = 2 1.491824698 0.5967298792
x2 = 3 2.459603111 1.475761867

10. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a Hermite polynomial to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the Hermite polynomial to determine whether the car ever exceeds a
55 mi/h speed limit on the road. If so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

11. a. Show that H2n+1(x) is the unique polynomial of least degree agreeing with f and f ′ at x0, . . . , xn.
[Hint: Assume that P(x) is another such polynomial and consider D = H2n+1 − P and D′ at
x0, x1, . . . , xn.]
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b. Derive the error term in Theorem 3.9. [Hint: Use the same method as in the Lagrange error
derivation, Theorem 3.3, defining

g(t) = f (t)− H2n+1(t)− (t − x0)
2 · · · (t − xn)

2

(x − x0)2 · · · (x − xn)2
[f (x)− H2n+1(x)]

and using the fact that g′(t) has (2n+ 2) distinct zeros in [a, b].]
12. Let z0 = x0, z1 = x0, z2 = x1, and z3 = x1. Form the following divided-difference table.

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2]
f [z1, z2] f [z0, z1, z2, z3]

z2 = x1 f [z2] = f (x1) f [z1, z2, z3]
f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1)

Show that the cubic Hermite polynomial H3(x) can also be written as f [z0] + f [z0, z1](x − x0) +
f [z0, z1, z2](x − x0)

2 + f [z0, z1, z2, z3](x − x0)
2(x − x1).

3.5 Cubic Spline Interpolation1

The previous sections concerned the approximation of arbitrary functions on closed intervals
using a single polynomial. However, high-degree polynomials can oscillate erratically, that
is, a minor fluctuation over a small portion of the interval can induce large fluctuations
over the entire range. We will see a good example of this in Figure 3.14 at the end of this
section.

An alternative approach is to divide the approximation interval into a collection of
subintervals and construct a (generally) different approximating polynomial on each sub-
interval. This is called piecewise-polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, which
consists of joining a set of data points

{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}
by a series of straight lines, as shown in Figure 3.7.

A disadvantage of linear function approximation is that there is likely no differ-
entiability at the endpoints of the subintervals, which, in a geometrical context, means
that the interpolating function is not “smooth.” Often it is clear from physical condi-
tions that smoothness is required, so the approximating function must be continuously
differentiable.

An alternative procedure is to use a piecewise polynomial of Hermite type. For example,
if the values of f and of f ′ are known at each of the points x0 < x1 < · · · < xn, a cubic
Hermite polynomial can be used on each of the subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn]
to obtain a function that has a continuous derivative on the interval [x0, xn].

1The proofs of the theorems in this section rely on results in Chapter 6.
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Figure 3.7

y � f (x)

x0 x1 x2 xj xj�1 xj�2 xn�1 xn. . . . . .

y

x

To determine the appropriate Hermite cubic polynomial on a given interval is simply
a matter of computing H3(x) for that interval. The Lagrange interpolating polynomials
needed to determine H3 are of first degree, so this can be accomplished without great
difficulty. However, to use Hermite piecewise polynomials for general interpolation, we
need to know the derivative of the function being approximated, and this is frequently
unavailable.

The remainder of this section considers approximation using piecewise polynomials
that require no specific derivative information, except perhaps at the endpoints of the interval
on which the function is being approximated.

Isaac Jacob Schoenberg
(1903–1990) developed his work
on splines during World War II
while on leave from the
University of Pennsylvania to
work at the Army’s Ballistic
Research Laboratory in
Aberdeen, Maryland. His original
work involved numerical
procedures for solving
differential equations. The much
broader application of splines to
the areas of data fitting and
computer-aided geometric design
became evident with the
widespread availability of
computers in the 1960s.

The simplest type of differentiable piecewise-polynomial function on an entire interval
[x0, xn] is the function obtained by fitting one quadratic polynomial between each successive
pair of nodes. This is done by constructing a quadratic on [x0, x1] agreeing with the function
at x0 and x1, another quadratic on [x1, x2] agreeing with the function at x1 and x2, and so
on. A general quadratic polynomial has three arbitrary constants—the constant term, the
coefficient of x, and the coefficient of x2—and only two conditions are required to fit the
data at the endpoints of each subinterval. So flexibility exists that permits the quadratics to
be chosen so that the interpolant has a continuous derivative on [x0, xn]. The difficulty arises
because we generally need to specify conditions about the derivative of the interpolant at
the endpoints x0 and xn. There is not a sufficient number of constants to ensure that the
conditions will be satisfied. (See Exercise 26.)

The root of the word “spline” is
the same as that of splint. It was
originally a small strip of wood
that could be used to join two
boards. Later the word was used
to refer to a long flexible strip,
generally of metal, that could be
used to draw continuous smooth
curves by forcing the strip to pass
through specified points and
tracing along the curve.

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants, so there is sufficient flexibility in the cubic spline pro-
cedure to ensure that the interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative. The construction of the cubic spline does not,
however, assume that the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes. (See Figure 3.8.)
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Figure 3.8

x0 x1 x2 xj xj�1 xj�2 xn�1 xn. . . . . .

S(x)

xxn�2

S0

S1
Sj Sj�1

Sn�1

Sn�2

Sj(xj�1) � f (xj�1) � Sj�1(xj�1)
Sj(xj�1) � Sj�1(xj�1)� �

�Sj (xj�1) � Sj�1(xj�1)�

Definition 3.10 Given a function f defined on [a, b] and a set of nodes a = x0 < x1 < · · · <
xn = b, a cubic spline interpolant S for f is a function that satisfies the following
conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj, xj+1] for each
j = 0, 1, . . . , n− 1;

(b) Sj(xj) = f (xj) and Sj(xj+1) = f (xj+1) for each j = 0, 1, . . . , n− 1;

(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n− 2; (Implied by (b).)

(d) S′j+1(xj+1) = S′j(xj+1) for each j = 0, 1, . . . , n− 2;

(e) S′′j+1(xj+1) = S′′j (xj+1) for each j = 0, 1, . . . , n− 2;

(f) One of the following sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (natural (or free) boundary);

(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

A natural spline has no conditions
imposed for the direction at its
endpoints, so the curve takes the
shape of a straight line after it
passes through the interpolation
points nearest its endpoints. The
name derives from the fact that
this is the natural shape a flexible
strip assumes if forced to pass
through specified interpolation
points with no additional
constraints. (See Figure 3.9.)

Figure 3.9

Although cubic splines are defined with other boundary conditions, the conditions given
in (f) are sufficient for our purposes. When the free boundary conditions occur, the spline is
called a natural spline, and its graph approximates the shape that a long flexible rod would
assume if forced to go through the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}.

In general, clamped boundary conditions lead to more accurate approximations because
they include more information about the function. However, for this type of boundary
condition to hold, it is necessary to have either the values of the derivative at the endpoints
or an accurate approximation to those values.

Example 1 Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

S0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,
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and the other for [2, 3], denoted

S1(x) = a1 + b1(x − 2)+ c1(x − 2)2 + d1(x − 2)3.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1, and

5 = f (3) = a1 + b1 + c1 + d1.

Two more come from the fact that S′0(2) = S′1(2) and S′′0 (2) = S′′1 (2). These are

S′0(2) = S′1(2) : b0 + 2c0 + 3d0 = b1 and S′′0 (2) = S′′1 (2) : 2c0 + 6d0 = 2c1

The final two come from the natural boundary conditions:

S′′0 (1) = 0 : 2c0 = 0 and S′′1 (3) = 0 : 2c1 + 6d1 = 0.

Solving this system of equations gives the spline

S(x) =
{

2+ 3
4 (x − 1)+ 1

4 (x − 1)3, for x ∈ [1, 2]
3+ 3

2 (x − 2)+ 3
4 (x − 2)2 − 1

4 (x − 2)3, for x ∈ [2, 3]

Construction of a Cubic Spline

As the preceding example demonstrates, a spline defined on an interval that is divided into n
subintervals will require determining 4n constants. To construct the cubic spline interpolant
for a given function f , the conditions in the definition are applied to the cubic polynomials

Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3,

for each j = 0, 1, . . . , n − 1. Since Sj(xj) = aj = f (xj), condition (c) can be applied to
obtain

aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj + bj(xj+1 − xj)+ cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3,

for each j = 0, 1, . . . , n− 2.

Clamping a spline indicates that
the ends of the flexible strip are
fixed so that it is forced to take a
specific direction at each of its
endpoints. This is important, for
example, when two spline
functions should match at their
endpoints. This is done
mathematically by specifying the
values of the derivative of the
curve at the endpoints of the
spline.

The terms xj+1 − xj are used repeatedly in this development, so it is convenient to
introduce the simpler notation

hj = xj+1 − xj,

for each j = 0, 1, . . . , n− 1. If we also define an = f (xn), then the equation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j (3.15)

holds for each j = 0, 1, . . . , n− 1.
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In a similar manner, define bn = S′(xn) and observe that

S′j(x) = bj + 2cj(x − xj)+ 3dj(x − xj)
2

implies S′j(xj) = bj, for each j = 0, 1, . . . , n− 1. Applying condition (d) gives

bj+1 = bj + 2cjhj + 3djh
2
j , (3.16)

for each j = 0, 1, . . . , n− 1.
Another relationship between the coefficients of Sj is obtained by defining cn =

S′′(xn)/2 and applying condition (e). Then, for each j = 0, 1, . . . , n− 1,

cj+1 = cj + 3djhj. (3.17)

Solving for dj in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) gives,
for each j = 0, 1, . . . , n− 1, the new equations

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1) (3.18)

and

bj+1 = bj + hj(cj + cj+1). (3.19)

The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of equation (3.18), first for bj,

bj = 1

hj
(aj+1 − aj)− hj

3
(2cj + cj+1), (3.20)

and then, with a reduction of the index, for bj−1. This gives

bj−1 = 1

hj−1
(aj − aj−1)− hj−1

3
(2cj−1 + cj).

Substituting these values into the equation derived from Eq. (3.19), with the index reduced
by one, gives the linear system of equations

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 = 3

hj
(aj+1 − aj)− 3

hj−1
(aj − aj−1), (3.21)

for each j = 1, 2, . . . , n− 1. This system involves only the {cj}nj=0 as unknowns. The values

of {hj}n−1
j=0 and {aj}nj=0 are given, respectively, by the spacing of the nodes {xj}nj=0 and the

values of f at the nodes. So once the values of {cj}nj=0 are determined, it is a simple matter

to find the remainder of the constants {bj}n−1
j=0 from Eq. (3.20) and {dj}n−1

j=0 from Eq. (3.17).

Then we can construct the cubic polynomials {Sj(x)}n−1
j=0 .

The major question that arises in connection with this construction is whether the values
of {cj}nj=0 can be found using the system of equations given in (3.21) and, if so, whether
these values are unique. The following theorems indicate that this is the case when either of
the boundary conditions given in part (f) of the definition are imposed. The proofs of these
theorems require material from linear algebra, which is discussed in Chapter 6.
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Natural Splines

Theorem 3.11 If f is defined at a = x0 < x1 < · · · < xn = b, then f has a unique natural spline interpolant
S on the nodes x0, x1, . . ., xn; that is, a spline interpolant that satisfies the natural boundary
conditions S′′(a) = 0 and S′′(b) = 0.

Proof The boundary conditions in this case imply that cn = S′′(xn)/2 = 0 and that

0 = S′′(x0) = 2c0 + 6d0(x0 − x0),

so c0 = 0. The two equations c0 = 0 and cn = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where A is the (n+ 1)×
(n+ 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and b and x are the vectors

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3

h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear
system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a
unique solution for c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′′(x0) =
S′′(xn) = 0 can be obtained by applying Algorithm 3.4.

ALGORITHM

3.4
Natural Cubic Spline

To construct the cubic spline interpolant S for the function f , defined at the numbers
x0 < x1 < · · · < xn, satisfying S′′(x0) = S′′(xn) = 0:

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.
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Step 2 For i = 1, 2, . . . , n− 1 set

αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 3 Set l0 = 1; (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0;
z0 = 0.

Step 4 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.

Step 5 Set ln = 1;
zn = 0;
cn = 0.

Step 6 For j = n− 1, n− 2, . . . , 0
set cj = zj − μjcj+1;

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;
dj = (cj+1 − cj)/(3hj).

Step 7 OUTPUT (aj, bj, cj, dj for j = 0, 1, . . . , n− 1);
STOP.

Example 2 At the beginning of Chapter 3 we gave some Taylor polynomials to approximate the expo-
nential f (x) = ex. Use the data points (0, 1), (1, e), (2, e2), and (3, e3) to form a natural
spline S(x) that approximates f (x) = ex.

Solution We have n = 3, h0 = h1 = h2 = 1, a0 = 1, a1 = e, a2 = e2, and a3 = e3. So the
matrix A and the vectors b and x given in Theorem 3.11 have the forms

A =

⎡
⎢⎢⎣

1 0 0 0
1 4 1 0
0 1 4 1
0 0 0 1

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
3(e2 − 2e+ 1)
3(e3 − 2e2 + e)

0

⎤
⎥⎥⎦ , and x =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ .

The vector-matrix equation Ax = b is equivalent to the system of equations

c0 = 0,

c0 + 4c1 + c2 = 3(e2 − 2e+ 1),

c1 + 4c2 + c3 = 3(e3 − 2e2 + e),

c3 = 0.

This system has the solution c0 = c3 = 0, and to 5 decimal places,

c1 = 1

5
(−e3+ 6e2− 9e+ 4) ≈ 0.75685, and c2 = 1

5
(4e3− 9e2+ 6e− 1) ≈ 5.83007.
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Solving for the remaining constants gives

b0 = 1

h0
(a1 − a0)− h0

3
(c1 + 2c0)

= (e− 1)− 1

15
(−e3 + 6e2 − 9e+ 4) ≈ 1.46600,

b1 = 1

h1
(a2 − a1)− h1

3
(c2 + 2c1)

= (e2 − e)− 1

15
(2e3 + 3e2 − 12e+ 7) ≈ 2.22285,

b2 = 1

h2
(a3 − a2)− h2

3
(c3 + 2c2)

= (e3 − e2)− 1

15
(8e3 − 18e2 + 12e− 2) ≈ 8.80977,

d0 = 1

3h0
(c1 − c0) = 1

15
(−e3 + 6e2 − 9e+ 4) ≈ 0.25228,

d1 = 1

3h1
(c2 − c1) = 1

3
(e3 − 3e2 + 3e− 1) ≈ 1.69107,

and

d2 = 1

3h2
(c3 − c1) = 1

15
(−4e3 + 9e2 − 6e+ 1) ≈ −1.94336.

The natural cubic spine is described piecewise by

S(x)=

⎧⎪⎨
⎪⎩

1+ 1.46600x + 0.25228x3, for x ∈ [0, 1],
2.71828+ 2.22285(x −1)+ 0.75685(x −1)2 +1.69107(x −1)3, for x ∈ [1, 2],
7.38906+ 8.80977(x −2)+ 5.83007(x −2)2 −1.94336(x −2)3, for x ∈ [2, 3].

The spline and its agreement with f (x) = ex are shown in Figure 3.10.

Figure 3.10
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The NumericalAnalysis package can be used to create a cubic spline in a manner similar
to other constructions in this chapter. However, the CurveFitting Package in Maple can also
be used, and since this has not been discussed previously we will use it to create the natural
spline in Example 2. First we load the package with the command

with(CurveFitting)

and define the function being approximated with

f := x→ ex

To create a spline we need to specify the nodes, variable, the degree, and the natural end-
points. This is done with

sn := t→ Spline([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t, degree = 3,
endpoints = ‘natural’)

Maple returns

t→ CurveFitting:-Spline([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t,
degree = 3, endpoints = ’natural’)

The form of the natural spline is seen with the command

sn(t)

which produces

⎧⎪⎨
⎪⎩

1.+ 1.465998t2 + 0.2522848t3 t < 1.0

0.495432+ 2.22285t + 0.756853(t − 1.0)2 + 1.691071(t − 1.0)3 t < 2.0

−10.230483+ 8.809770t + 5.830067(t − 2.0)2 − 1.943356(t − 2.0)3 otherwise

Once we have determined a spline approximation for a function we can use it to
approximate other properties of the function. The next illustration involves the integral
of the spline we found in the previous example.

Illustration To approximate the integral of f (x) = ex on [0, 3], which has the value

∫ 3

0
ex dx = e3 − 1 ≈ 20.08553692− 1 = 19.08553692,

we can piecewise integrate the spline that approximates f on this integral. This gives

∫ 3

0
S(x) =

∫ 1

0
1+ 1.46600x + 0.25228x3 dx

+
∫ 2

1
2.71828+ 2.22285(x − 1)+ 0.75685(x − 1)2 + 1.69107(x − 1)3 dx

+
∫ 3

2
7.38906+ 8.80977(x − 2)+ 5.83007(x − 2)2 − 1.94336(x − 2)3 dx.
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Integrating and collecting values from like powers gives

∫ 3

0
S(x) =

[
x + 1.46600

x2

2
+ 0.25228

x4

4

]1

0

+
[

2.71828(x−1)+ 2.22285
(x−1)2

2
+ 0.75685

(x−1)3

3
+1.69107

(x−1)4

4

]2

1

+
[

7.38906(x−2)+ 8.80977
(x−2)2

2
+ 5.83007

(x−2)3

3
−1.94336

(x−2)4

4

]3

2

= (1+ 2.71828+ 7.38906)+ 1

2
(1.46600+ 2.22285+ 8.80977)

+ 1

3
(0.75685+ 5.83007)+ 1

4
(0.25228+ 1.69107− 1.94336)

= 19.55229.

Because the nodes are equally spaced in this example the integral approximation is
simply∫ 3

0
S(x) dx = (a0+a1+a2)+ 1

2
(b0+b1+b2)+ 1

3
(c0+c1+c2)+ 1

4
(d0+d1+d2). (3.22)

�

If we create the natural spline using Maple as described after Example 2, we can then
use Maple’s integration command to find the value in the Illustration. Simply enter

int(sn(t), t = 0 .. 3)

19.55228648

Clamped Splines

Example 3 In Example 1 we found a natural spline S that passes through the points (1, 2), (2, 3),
and (3, 5). Construct a clamped spline s through these points that has s′(1) = 2 and
s′(3) = 1.

Solution Let

s0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,

be the cubic on [1, 2] and the cubic on [2, 3] be

s1(x) = a1 + b1(x − 2)+ c1(x − 2)2 + d1(x − 2)3.

Then most of the conditions to determine the 8 constants are the same as those in Example
1. That is,

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1, and

5 = f (3) = a1 + b1 + c1 + d1.

s′0(2) = s′1(2) : b0 + 2c0 + 3d0 = b1 and s′′0(2) = s′′1(2) : 2c0 + 6d0 = 2c1
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However, the boundary conditions are now

s′0(1) = 2 : b0 = 2 and s′1(3) = 1 : b1 + 2c1 + 3d1 = 1.

Solving this system of equations gives the spline as

s(x) =
{

2+ 2(x − 1)− 5
2 (x − 1)2 + 3

2 (x − 1)3, for x ∈ [1, 2]
3+ 3

2 (x − 2)+ 2(x − 2)2 − 3
2 (x − 2)3, for x ∈ [2, 3]

In the case of general clamped boundary conditions we have a result that is similar to
the theorem for natural boundary conditions described in Theorem 3.11.

Theorem 3.12 If f is defined at a = x0 < x1 < · · · < xn = b and differentiable at a and b, then f has a
unique clamped spline interpolant S on the nodes x0, x1, . . . , xn; that is, a spline interpolant
that satisfies the clamped boundary conditions S′(a) = f ′(a) and S′(b) = f ′(b).

Proof Since f ′(a) = S′(a) = S′(x0) = b0, Eq. (3.20) with j = 0 implies

f ′(a) = 1

h0
(a1 − a0)− h0

3
(2c0 + c1).

Consequently,

2h0c0 + h0c1 = 3

h0
(a1 − a0)− 3f ′(a).

Similarly,

f ′(b) = bn = bn−1 + hn−1(cn−1 + cn),

so Eq. (3.20) with j = n− 1 implies that

f ′(b) = an − an−1

hn−1
− hn−1

3
(2cn−1 + cn)+ hn−1(cn−1 + cn)

= an − an−1

hn−1
+ hn−1

3
(cn−1 + 2cn),

and

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1).

Equations (3.21) together with the equations

2h0c0 + h0c1 = 3

h0
(a1 − a0)− 3f ′(a)

and

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1)
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3.5 Cubic Spline Interpolation 155

determine the linear system Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2h0 h0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 hn−1 2hn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′(x0) = f ′(x0)

and S′(xn) = f ′(xn) can be obtained by applying Algorithm 3.5.

ALGORITHM

3.5
Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers x0 <

x1 < · · · < xn, satisfying S′(x0) = f ′(x0) and S′(xn) = f ′(xn):

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn); FPO = f ′(x0);
FPN = f ′(xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Step 2 Set α0 = 3(a1 − a0)/h0 − 3FPO;
αn = 3FPN− 3(an − an−1)/hn−1.

Step 3 For i = 1, 2, . . . , n− 1

set αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 4 Set l0 = 2h0; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0.5;
z0 = α0/l0.

Step 5 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.
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Step 6 Set ln = hn−1(2− μn−1);
zn = (αn − hn−1zn−1)/ln;
cn = zn.

Step 7 For j = n− 1, n− 2, . . . , 0
set cj = zj − μjcj+1;

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;
dj = (cj+1 − cj)/(3hj).

Step 8 OUTPUT (aj, bj, cj, dj for j = 0, 1, . . . , n− 1);
STOP.

Example 4 Example 2 used a natural spline and the data points (0, 1), (1, e), (2, e2), and (3, e3) to form
a new approximating function S(x). Determine the clamped spline s(x) that uses this data
and the additional information that, since f ′(x) = ex, so f ′(0) = 1 and f ′(3) = e3.

Solution As in Example 2, we have n = 3, h0 = h1 = h2 = 1, a0 = 0, a1 = e, a2 = e2,
and a3 = e3. This together with the information that f ′(0) = 1 and f ′(3) = e3 gives the
the matrix A and the vectors b and x with the forms

A =

⎡
⎢⎢⎣

2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

3(e− 2)
3(e2 − 2e+ 1)
3(e3 − 2e2 + e)

3e2

⎤
⎥⎥⎦ , and x =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ .

The vector-matrix equation Ax = b is equivalent to the system of equations

2c0 + c1 = 3(e− 2),

c0 + 4c1 + c2 = 3(e2 − 2e+ 1),

c1 + 4c2 + c3 = 3(e3 − 2e2 + e),

c2 + 2c3 = 3e2.

Solving this system simultaneously for c0, c1, c2 and c3 gives, to 5 decimal places,

c0 = 1

15
(2e3 − 12e2 + 42e− 59) = 0.44468,

c1 = 1

15
(−4e3 + 24e2 − 39e+ 28) = 1.26548,

c2 = 1

15
(14e3 − 39e2 + 24e− 8) = 3.35087,

c3 = 1

15
(−7e3 + 42e2 − 12e+ 4) = 9.40815.

Solving for the remaining constants in the same manner as Example 2 gives

b0 = 1.00000, b1 = 2.71016, b2 = 7.32652,

and

d0 = 0.27360, d1 = 0.69513, d2 = 2.01909.
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This gives the clamped cubic spine

s(x) =

⎧⎪⎨
⎪⎩

1+ x + 0.44468x2 + 0.27360x3, if 0 ≤ x < 1,

2.71828+ 2.71016(x −1)+ 1.26548(x −1)2 + 0.69513(x −1)3, if 1 ≤ x < 2,

7.38906+ 7.32652(x −2)+ 3.35087(x −2)2 + 2.01909(x −2)3, if 2 ≤ x ≤ 3.

The graph of the clamped spline and f (x) = ex are so similar that no difference can be
seen.

We can create the clamped cubic spline in Example 4 with the same commands we
used for the natural spline, the only change that is needed is to specify the derivative at the
endpoints. In this case we use

sn := t→ Spline ([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t, degree = 3,
endpoints = [1.0, e3.0

])
giving essentially the same results as in the example.

We can also approximate the integral of f on [0, 3], by integrating the clamped spline.
The exact value of the integral is∫ 3

0
ex dx = e3 − 1 ≈ 20.08554− 1 = 19.08554.

Because the data is equally spaced, piecewise integrating the clamped spline results in the
same formula as in (3.22), that is,∫ 3

0
s(x) dx = (a0 + a1 + a2)+ 1

2
(b0 + b1 + b2)

+ 1

3
(c0 + c1 + c2)+ 1

4
(d0 + d1 + d2).

Hence the integral approximation is∫ 3

0
s(x) dx = (1+ 2.71828+ 7.38906)+ 1

2
(1+ 2.71016+ 7.32652)

+ 1

3
(0.44468+ 1.26548+ 3.35087)+ 1

4
(0.27360+ 0.69513+ 2.01909)

= 19.05965.

The absolute error in the integral approximation using the clamped and natural splines are

Natural : |19.08554− 19.55229| = 0.46675

and

Clamped : |19.08554− 19.05965| = 0.02589.

For integration purposes the clamped spline is vastly superior. This should be no surprise
since the boundary conditions for the clamped spline are exact, whereas for the natural
spline we are essentially assuming that, since f ′′(x) = ex,

0 = S′′(0) ≈ f ′′(0) = e1 = 1 and 0 = S′′(3) ≈ f ′′(3) = e3 ≈ 20.

The next illustration uses a spine to approximate a curve that has no given functional
representation.
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Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11

Table 3.18

x 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3

f (x) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Figure 3.12
f (x)

x

1

2

3

4

6 7 8 91 32 4 5 10 11 12 13

Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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Table 3.19
j xj aj bj cj dj

0 0.9 1.3 5.40 0.00 −0.25
1 1.3 1.5 0.42 −0.30 0.95
2 1.9 1.85 1.09 1.41 −2.96
3 2.1 2.1 1.29 −0.37 −0.45
4 2.6 2.6 0.59 −1.04 0.45
5 3.0 2.7 −0.02 −0.50 0.17
6 3.9 2.4 −0.50 −0.03 0.08
7 4.4 2.15 −0.48 0.08 1.31
8 4.7 2.05 −0.07 1.27 −1.58
9 5.0 2.1 0.26 −0.16 0.04

10 6.0 2.25 0.08 −0.03 0.00
11 7.0 2.3 0.01 −0.04 −0.02
12 8.0 2.25 −0.14 −0.11 0.02
13 9.2 1.95 −0.34 −0.05 −0.01
14 10.5 1.4 −0.53 −0.10 −0.02
15 11.3 0.9 −0.73 −0.15 1.21
16 11.6 0.7 −0.49 0.94 −0.84
17 12.0 0.6 −0.14 −0.06 0.04
18 12.6 0.5 −0.18 0.00 −0.45
19 13.0 0.4 −0.39 −0.54 0.60
20 13.3 0.25

Figure 3.13
f (x)

x

1

2

3

4

6 7 8 931 2 54 10 11 12 13

For comparison purposes, Figure 3.14 gives an illustration of the curve that is generated using
a Lagrange interpolating polynomial to fit the data given in Table 3.18. The interpolating
polynomial in this case is of degree 20 and oscillates wildly. It produces a very strange
illustration of the back of a duck, in flight or otherwise.
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Figure 3.14
f (x)

x

1

2

3

4

8 96 731 2 4 5 10 1211

To use a clamped spline to approximate this curve we would need derivative approxima-
tions for the endpoints. Even if these approximations were available, we could expect little
improvement because of the close agreement of the natural cubic spline to the curve of the
top profile. �

Constructing a cubic spline to approximate the lower profile of the ruddy duck would
be more difficult since the curve for this portion cannot be expressed as a function of x, and
at certain points the curve does not appear to be smooth. These problems can be resolved
by using separate splines to represent various portions of the curve, but a more effective
approach to approximating curves of this type is considered in the next section.

The clamped boundary conditions are generally preferred when approximating func-
tions by cubic splines, so the derivative of the function must be known or approximated
at the endpoints of the interval. When the nodes are equally spaced near both end-
points, approximations can be obtained by any of the appropriate formulas given in
Sections 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably
more difficult.

To conclude this section, we list an error-bound formula for the cubic spline with
clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57–58.

Theorem 3.13 Let f ∈ C4[a, b] with maxa≤x≤b |f (4)(x)| = M. If S is the unique clamped cubic spline
interpolant to f with respect to the nodes a = x0 < x1 < · · · < xn = b, then for all x in
[a, b],

|f (x)− S(x)| ≤ 5M

384
max

0≤j≤n−1
(xj+1 − xj)

4.

A fourth-order error-bound result also holds in the case of natural boundary conditions,
but it is more difficult to express. (See [BD], pp. 827–835.)

The natural boundary conditions will generally give less accurate results than the
clamped conditions near the ends of the interval [x0, xn] unless the function f happens
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to nearly satisfy f ′′(x0) = f ′′(xn) = 0. An alternative to the natural boundary condition
that does not require knowledge of the derivative of f is the not-a-knot condition, (see
[Deb2], pp. 55–56). This condition requires that S′′′(x) be continuous at x1 and at xn−1.

E X E R C I S E S E T 3.5

1. Determine the natural cubic spline S that interpolates the data f (0) = 0, f (1) = 1, and f (2) = 2.

2. Determine the clamped cubic spline s that interpolates the data f (0) = 0, f (1) = 1, f (2) = 2 and
satisfies s′(0) = s′(2) = 1.

3. Construct the natural cubic spline for the following data.
a. x f (x)

8.3 17.56492
8.6 18.50515

b. x f (x)

0.8 0.22363362
1.0 0.65809197

c. x f (x)

−0.5 −0.0247500
−0.25 0.3349375

0 1.1010000

d. x f (x)

0.1 −0.62049958
0.2 −0.28398668
0.3 0.00660095
0.4 0.24842440

4. Construct the natural cubic spline for the following data.
a. x f (x)

0 1.00000
0.5 2.71828

b. x f (x)

−0.25 1.33203
0.25 0.800781

c. x f (x)

0.1 −0.29004996
0.2 −0.56079734
0.3 −0.81401972

d. x f (x)

−1 0.86199480
−0.5 0.95802009

0 1.0986123
0.5 1.2943767

5. The data in Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate f (x) and f ′(x), and calculate the actual error.

a. f (x) = x ln x; approximate f (8.4) and f ′(8.4).

b. f (x) = sin(ex − 2); approximate f (0.9) and f ′(0.9).

c. f (x) = x3 + 4.001x2 + 4.002x + 1.101; approximate f (− 1
3 ) and f ′(− 1

3 ).

d. f (x) = x cos x − 2x2 + 3x − 1; approximate f (0.25) and f ′(0.25).

6. The data in Exercise 4 were generated using the following functions. Use the cubic splines constructed
in Exercise 4 for the given value of x to approximate f (x) and f ′(x), and calculate the actual error.

a. f (x) = e2x; approximate f (0.43) and f ′(0.43).

b. f (x) = x4 − x3 + x2 − x + 1; approximate f (0) and f ′(0).
c. f (x) = x2 cos x − 3x; approximate f (0.18) and f ′(0.18).

d. f (x) = ln(ex + 2); approximate f (0.25) and f ′(0.25).

7. Construct the clamped cubic spline using the data of Exercise 3 and the fact that

a. f ′(8.3) = 3.116256 and f ′(8.6) = 3.151762

b. f ′(0.8) = 2.1691753 and f ′(1.0) = 2.0466965

c. f ′(−0.5) = 0.7510000 and f ′(0) = 4.0020000

d. f ′(0.1) = 3.58502082 and f ′(0.4) = 2.16529366

8. Construct the clamped cubic spline using the data of Exercise 4 and the fact that

a. f ′(0) = 2 and f ′(0.5) = 5.43656

b. f ′(−0.25) = 0.437500 and f ′(0.25) = −0.625000
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c. f ′(0.1) = −2.8004996 and f ′(0) = −2.9734038

d. f ′(−1) = 0.15536240 and f ′(0.5) = 0.45186276

9. Repeat Exercise 5 using the clamped cubic splines constructed in Exercise 7.

10. Repeat Exercise 6 using the clamped cubic splines constructed in Exercise 8.

11. A natural cubic spline S on [0, 2] is defined by

S(x) =
{

S0(x) = 1+ 2x − x3, if 0 ≤ x < 1,

S1(x) = 2+ b(x − 1)+ c(x − 1)2 + d(x − 1)3, if 1 ≤ x ≤ 2.

Find b, c, and d.

12. A clamped cubic spline s for a function f is defined on [1, 3] by

s(x) =
{

s0(x) = 3(x − 1)+ 2(x − 1)2 − (x − 1)3, if 1 ≤ x < 2,

s1(x) = a+ b(x − 2)+ c(x − 2)2 + d(x − 2)3, if 2 ≤ x ≤ 3.

Given f ′(1) = f ′(3), find a, b, c, and d.

13. A natural cubic spline S is defined by

S(x) =
{

S0(x) = 1+ B(x − 1)− D(x − 1)3, if 1 ≤ x < 2,

S1(x) = 1+ b(x − 2)− 3
4 (x − 2)2 + d(x − 2)3, if 2 ≤ x ≤ 3.

If S interpolates the data (1, 1), (2, 1), and (3, 0), find B, D, b, and d.

14. A clamped cubic spline s for a function f is defined by

s(x) =
{

s0(x) = 1+ Bx + 2x2 − 2x3, if 0 ≤ x < 1,

s1(x) = 1+ b(x − 1)− 4(x − 1)2 + 7(x − 1)3, if 1 ≤ x ≤ 2.

Find f ′(0) and f ′(2).
15. Construct a natural cubic spline to approximate f (x) = cosπx by using the values given by f (x) at

x = 0, 0.25, 0.5, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to
∫ 1

0 cosπx dx =
0. Use the derivatives of the spline to approximatef ′(0.5) and f ′′(0.5). Compare these approximations
to the actual values.

16. Construct a natural cubic spline to approximate f (x) = e−x by using the values given by f (x) at x = 0,
0.25, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to

∫ 1
0 e−x dx = 1 − 1/e.

Use the derivatives of the spline to approximate f ′(0.5) and f ′′(0.5). Compare the approximations to
the actual values.

17. Repeat Exercise 15, constructing instead the clamped cubic spline with f ′(0) = f ′(1) = 0.

18. Repeat Exercise 16, constructing instead the clamped cubic spline with f ′(0) = −1, f ′(1) = −e−1.

19. Suppose that f (x) is a polynomial of degree 3. Show that f (x) is its own clamped cubic spline, but
that it cannot be its own natural cubic spline.

20. Suppose the data {xi, f (xi))}ni=1 lie on a straight line. What can be said about the natural and clamped
cubic splines for the function f ? [Hint: Take a cue from the results of Exercises 1 and 2.]

21. Given the partition x0 = 0, x1 = 0.05, and x2 = 0.1 of [0, 0.1], find the piecewise linear interpolating
function F for f (x) = e2x . Approximate

∫ 0.1
0 e2x dx with

∫ 0.1
0 F(x) dx, and compare the results to the

actual value.

22. Let f ∈ C2[a, b], and let the nodes a = x0 < x1 < · · · < xn = b be given. Derive an error estimate
similar to that in Theorem 3.13 for the piecewise linear interpolating function F. Use this estimate to
derive error bounds for Exercise 21.

23. Extend Algorithms 3.4 and 3.5 to include as output the first and second derivatives of the spline at the
nodes.

24. Extend Algorithms 3.4 and 3.5 to include as output the integral of the spline over the interval [x0, xn].
25. Given the partition x0 = 0, x1 = 0.05, x2 = 0.1 of [0, 0.1] and f (x) = e2x:

a. Find the cubic spline s with clamped boundary conditions that interpolates f .

b. Find an approximation for
∫ 0.1

0 e2x dx by evaluating
∫ 0.1

0 s(x) dx.
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c. Use Theorem 3.13 to estimate max0≤x≤0.1 |f (x)− s(x)| and∣∣∣∣
∫ 0.1

0
f (x) dx −

∫ 0.1

0
s(x) dx

∣∣∣∣ .

d. Determine the cubic spline S with natural boundary conditions, and compare S(0.02), s(0.02),
and e0.04 = 1.04081077.

26. Let f be defined on [a, b], and let the nodes a = x0 < x1 < x2 = b be given. A quadratic spline
interpolating function S consists of the quadratic polynomial

S0(x) = a0 + b0(x − x0)+ c0(x − x0)
2 on [x0, x1]

and the quadratic polynomial

S1(x) = a1 + b1(x − x1)+ c1(x − x1)
2 on [x1, x2],

such that

i. S(x0) = f (x0), S(x1) = f (x1), and S(x2) = f (x2),

ii. S ∈ C1[x0, x2].
Show that conditions (i) and (ii) lead to five equations in the six unknowns a0, b0, c0, a1, b1, and c1.
The problem is to decide what additional condition to impose to make the solution unique. Does the
condition S ∈ C2[x0, x2] lead to a meaningful solution?

27. Determine a quadratic spline s that interpolates the data f (0) = 0, f (1) = 1, f (2) = 2 and satisfies
s′(0) = 2.

28. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use natural cubic spline interpolation to approximate the population in the years
1940, 1975, and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

29. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a clamped cubic spline to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed limit
on the road; if so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

30. The 2009 Kentucky Derby was won by a horse named Mine That Bird (at more than 50:1 odds)
in a time of 2:02.66 (2 minutes and 2.66 seconds) for the 1 1

4 -mile race. Times at the quarter-mile,
half-mile, and mile poles were 0:22.98, 0:47.23, and 1:37.49.

a. Use these values together with the starting time to construct a natural cubic spline for Mine That
Bird’s race.

b. Use the spline to predict the time at the three-quarter-mile pole, and compare this to the actual
time of 1:12.09.

c. Use the spline to approximate Mine That Bird’s starting speed and speed at the finish line.

31. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28 days
after birth. The first sample was reared on young oak leaves, whereas the second sample was reared
on mature leaves from the same tree.

a. Use a natural cubic spline to approximate the average weight curve for each sample.
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b. Find an approximate maximum average weight for each sample by determining the maximum
of the spline.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74

Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

32. The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants.
The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the
three clamped cubic splines.

x5 10 15 20 25 30

8
7
6
5
4
3
2
1

Slope 3 Slope �4f (x) Slope �

Slope

Slope �

Slope 1

Curve 1 Curve 2 Curve 3 3
2

2
3

1
3

Curve 1 Curve 2 Curve 3

i xi f (xi) f ′(xi) i xi f (xi) f ′(xi) i xi f (xi) f ′(xi)

0 1 3.0 1.0 0 17 4.5 3.0 0 27.7 4.1 0.33
1 2 3.7 1 20 7.0 1 28 4.3
2 5 3.9 2 23 6.1 2 29 4.1
3 6 4.2 3 24 5.6 3 30 3.0 −1.5
4 7 5.7 4 25 5.8
5 8 6.6 5 27 5.2
6 10 7.1 6 27.7 4.1 −4.0
7 13 6.7
8 17 4.5 −0.67

33. Repeat Exercise 32, constructing three natural splines using Algorithm 3.4.

3.6 Parametric Curves

None of the techniques developed in this chapter can be used to generate curves of the form
shown in Figure 3.15 because this curve cannot be expressed as a function of one coordinate
variable in terms of the other. In this section we will see how to represent general curves
by using a parameter to express both the x- and y-coordinate variables. Any good book
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on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)

Figure 3.15
y

x1

1

�1

�1

A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (x0, y0), (x1, y1), . . ., (xn, yn) in the order given is to use
a parameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approximation
functions with

xi = x(ti) and yi = y(ti), for each i = 0, 1, . . . , n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{ti}4i=0 equally spaced in [0,1], which gives the data in Table 3.20.

Table 3.20 i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

This produces the interpolating polynomials

x(t) = (((64t − 352
3

)
t + 60

)
t − 14

3

)
t−1 and y(t) = (((− 64

3 t + 48
)

t − 116
3

)
t + 11

)
t.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation.
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Figure 3.16
y

x1

1

�1

�1

(x(t), y(t))

Parametric Hermite and spline curves can be generated in a similar manner, but these
also require extensive computational effort.

Applications in computer graphics require the rapid generation of smooth curves that
can be easily and quickly modified. For both aesthetic and computational reasons, changing
one portion of these curves should have little or no effect on other portions of the curves.
This eliminates the use of interpolating polynomials and splines since changing one portion
of these curves affects the whole curve.

The choice of curve for use in computer graphics is generally a form of the piece-
wise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial is completely
determined by specifying its endpoints and the derivatives at these endpoints. As a conse-
quence, one portion of the curve can be changed while leaving most of the curve the same.
Only the adjacent portions need to be modified to ensure smoothness at the endpoints. The
computations can be performed quickly, and the curve can be modified a section at a time.

A successful computer design
system needs to be based on a
formal mathematical theory so
that the results are predictable,
but this theory should be
performed in the background so
that the artist can base the design
on aesthetics.

The problem with Hermite interpolation is the need to specify the derivatives at
the endpoints of each section of the curve. Suppose the curve has n + 1 data points
(x(t0), y(t0)), . . . , (x(tn), y(tn)), and we wish to parameterize the cubic to allow complex
features. Then we must specify x′(ti) and y′(ti), for each i = 0, 1, . . . , n. This is not as
difficult as it would first appear, since each portion is generated independently. We must
ensure only that the derivatives at the endpoints of each portion match those in the adjacent
portion. Essentially, then, we can simplify the process to one of determining a pair of cubic
Hermite polynomials in the parameter t, where t0 = 0 and t1 = 1, given the endpoint data
(x(0), y(0)) and (x(1), y(1)) and the derivatives dy/dx (at t = 0) and dy/dx (at t = 1).

Notice, however, that we are specifying only six conditions, and the cubic polynomials
in x(t) and y(t) each have four parameters, for a total of eight. This provides flexibility
in choosing the pair of cubic Hermite polynomials to satisfy the conditions, because the
natural form for determining x(t) and y(t) requires that we specify x′(0), x′(1), y′(0), and
y′(1). The explicit Hermite curve in x and y requires specifying only the quotients

dy

dx
(t = 0) = y′(0)

x′(0)
and

dy

dx
(t = 1) = y′(1)

x′(1)
.

By multiplying x′(0) and y′(0) by a common scaling factor, the tangent line to the curve
at (x(0), y(0)) remains the same, but the shape of the curve varies. The larger the scaling
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factor, the closer the curve comes to approximating the tangent line near (x(0), y(0)). A
similar situation exists at the other endpoint (x(1), y(1)).

To further simplify the process in interactive computer graphics, the derivative at an
endpoint is specified by using a second point, called a guidepoint, on the desired tangent
line. The farther the guidepoint is from the node, the more closely the curve approximates
the tangent line near the node.

In Figure 3.17, the nodes occur at (x0, y0) and (x1, y1), the guidepoint for (x0, y0) is
(x0 + α0, y0 + β0), and the guidepoint for (x1, y1) is (x1 − α1, y1 − β1). The cubic Hermite
polynomial x(t) on [0, 1] satisfies

x(0) = x0, x(1) = x1, x′(0) = α0, and x′(1) = α1.

Figure 3.17

x

y

(x0, y0)

(x1, y1)

(x0 � α0, y0 � β0)

(x1 � α1, y1 � β1)

The unique cubic polynomial satisfying these conditions is

x(t) = [2(x0 − x1)+ (α0 + α1)]t3 + [3(x1 − x0)− (α1 + 2α0)]t2 + α0t + x0. (3.23)

In a similar manner, the unique cubic polynomial satisfying

y(0) = y0, y(1) = y1, y′(0) = β0, and y′(1) = β1

is

y(t) = [2(y0 − y1)+ (β0 + β1)]t3 + [3(y1 − y0)− (β1 + 2β0)]t2 + β0t + y0. (3.24)

Example 2 Determine the graph of the parametric curve generated Eq. (3.23) and (3.24) when the end
points are (x0, y0) = (0, 0) and (x1, y1) = (1, 0), and respective guide points, as shown in
Figure 3.18 are (1, 1) and (0, 1).

Solution The endpoint information implies that x0 = 0, x1 = 1, y0 = 0, and y1 = 0, and
the guide points at (1, 1) and (0, 1) imply that α0 = 1, α1 = 1, β0 = 1, and β1 = −1. Note
that the slopes of the guide lines at (0, 0) and (1, 0) are, respectively

β0

α0
= 1

1
= 1 and

β1

α1
= −1

1
= −1.

Equations (3.23) and (3.24) imply that for t ∈ [0, 1] we have

x(t) = [2(0− 1)+ (1+ 1)]t3 + [3(0− 0)− (1+ 2 · 1)]t2 + 1 · t + 0 = t

y

x

(1, 1)

(1, 1)(0, 0)

(0, 1)

Nodes

Guidepoints

Figure 3.18
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and

y(t) = [2(0− 0)+ (1+ (−1))]t3 + [3(0− 0)− (−1+ 2 · 1)]t2 + 1 · t + 0 = −t2 + t.

This graph is shown as (a) in Figure 3.19, together with some other possibilities of curves
produced by Eqs. (3.23) and (3.24) when the nodes are (0, 0) and (1, 0) and the slopes at
these nodes are 1 and −1, respectively.

Figure 3.19
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The standard procedure for determining curves in an interactive graphics mode is to first
use a mouse or touchpad to set the nodes and guidepoints to generate a first approximation
to the curve. These can be set manually, but most graphics systems permit you to use your
input device to draw the curve on the screen freehand and will select appropriate nodes and
guidepoints for your freehand curve.

The nodes and guidepoints can then be manipulated into a position that produces an
aesthetically pleasing curve. Since the computation is minimal, the curve can be determined
so quickly that the resulting change is seen immediately. Moreover, all the data needed to
compute the curves are imbedded in the coordinates of the nodes and guidepoints, so no
analytical knowledge is required of the user.

Pierre Etienne Bézier
(1910–1999) was head of design
and production for Renault
motorcars for most of his
professional life. He began his
research into computer-aided
design and manufacturing in
1960, developing interactive tools
for curve and surface design, and
initiated computer-generated
milling for automobile modeling.

The Bézier curves that bear his
name have the advantage of being
based on a rigorous mathematical
theory that does not need to be
explicitly recognized by the
practitioner who simply wants to
make an aesthetically pleasing
curve or surface. These are the
curves that are the basis of the
powerful Adobe Postscript
system, and produce the freehand
curves that are generated in most
sufficiently powerful computer
graphics packages.

Popular graphics programs use this type of system for their freehand graphic representa-
tions in a slightly modified form. The Hermite cubics are described as Bézier polynomials,
which incorporate a scaling factor of 3 when computing the derivatives at the endpoints.
This modifies the parametric equations to

x(t) = [2(x0 − x1)+ 3(α0 + α1)]t3 + [3(x1 − x0)− 3(α1 + 2α0)]t2 + 3α0t + x0, (3.25)

and

y(t) = [2(y0 − y1)+ 3(β0 + β1)]t3 + [3(y1 − y0)− 3(β1 + 2β0)]t2 + 3β0t + y0, (3.26)

for 0 ≤ t ≤ 1, but this change is transparent to the user of the system.
Algorithm 3.6 constructs a set of Bézier curves based on the parametric equations in

Eqs. (3.25) and (3.26).

ALGORITHM

3.6
Bézier Curve

To construct the cubic Bézier curves C0, . . . , Cn−1 in parametric form, where Ci is repre-
sented by

(xi(t), yi(t)) = (a(i)0 + a(i)1 t + a(i)2 t2 + a(i)3 t3, b(i)0 + b(i)1 t + b(i)2 t2 + b(i)3 t3),

for 0 ≤ t ≤ 1, as determined by the left endpoint (xi, yi), left guidepoint (x+i , y+i ), right
endpoint (xi+1, yi+1), and right guidepoint (x−i+1, y−i+1) for each i = 0, 1, . . . , n− 1:

INPUT n; (x0, y0), . . . , (xn, yn); (x
+
0 , y+0 ), . . . , (x

+
n−1, y+n−1); (x

−
1 , y−1 ), . . . , (x

−
n , y−n ).

OUTPUT coefficients {a(i)0 , a(i)1 , a(i)2 , a(i)3 , b(i)0 , b(i)1 , b(i)2 , b(i)3 , for 0 ≤ i ≤ n− 1}.
Step 1 For each i = 0, 1, . . . , n− 1 do Steps 2 and 3.

Step 2 Set a(i)0 = xi;

b(i)0 = yi;

a(i)1 = 3(x+i − xi);

b(i)1 = 3(y+i − yi);

a(i)2 = 3(xi + x−i+1 − 2x+i );

b(i)2 = 3(yi + y−i+1 − 2y+i );

a(i)3 = xi+1 − xi + 3x+i − 3x−i+1;

b(i)3 = yi+1 − yi + 3y+i − 3y−i+1;

Step 3 OUTPUT (a(i)0 , a(i)1 , a(i)2 , a(i)3 , b(i)0 , b(i)1 , b(i)2 , b(i)3 ).

Step 4 STOP.
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Three-dimensional curves are generated in a similar manner by additionally specifying
third components z0 and z1 for the nodes and z0+γ0 and z1−γ1 for the guidepoints. The more
difficult problem involving the representation of three-dimensional curves concerns the loss
of the third dimension when the curve is projected onto a two-dimensional computer screen.
Various projection techniques are used, but this topic lies within the realm of computer
graphics. For an introduction to this topic and ways that the technique can be modified for
surface representations, see one of the many books on computer graphics methods, such as
[FVFH].

E X E R C I S E S E T 3.6

1. Let (x0, y0) = (0, 0) and (x1, y1) = (5, 2) be the endpoints of a curve. Use the given guide-
points to construct parametric cubic Hermite approximations (x(t), y(t)) to the curve, and graph the
approximations.
a. (1, 1) and (6, 1)

b. (0.5, 0.5) and (5.5, 1.5)

c. (1, 1) and (6, 3)

d. (2, 2) and (7, 0)

2. Repeat Exercise 1 using cubic Bézier polynomials.

3. Construct and graph the cubic Bézier polynomials given the following points and guidepoints.

a. Point (1, 1) with guidepoint (1.5, 1.25) to point (6, 2) with guidepoint (7, 3)

b. Point (1, 1) with guidepoint (1.25, 1.5) to point (6, 2) with guidepoint (5, 3)

c. Point (0, 0)with guidepoint (0.5, 0.5) to point (4, 6)with entering guidepoint (3.5, 7) and exiting
guidepoint (4.5, 5) to point (6, 1) with guidepoint (7, 2)

d. Point (0, 0) with guidepoint (0.5, 0.5) to point (2, 1) with entering guidepoint (3, 1) and exiting
guidepoint (3, 1) to point (4, 0) with entering guidepoint (5, 1) and exiting guidepoint (3,−1)
to point (6,−1) with guidepoint (6.5,−0.25)

4. Use the data in the following table and Algorithm 3.6 to approximate the shape of the letter N .

i xi yi αi βi α′i β ′i

0 3 6 3.3 6.5
1 2 2 2.8 3.0 2.5 2.5
2 6 6 5.8 5.0 5.0 5.8
3 5 2 5.5 2.2 4.5 2.5
4 6.5 3 6.4 2.8

5. Suppose a cubic Bézier polynomial is placed through (u0, v0) and (u3, v3) with guidepoints (u1, v1)

and (u2, v2), respectively.

a. Derive the parametric equations for u(t) and v(t) assuming that

u(0) = u0, u(1) = u3, u′(0) = u1 − u0, u′(1) = u3 − u2

and

v(0) = v0, v(1) = v3, v′(0) = v1 − v0, v′(1) = v3 − v2.

b. Let f (i/3) = ui, for i = 0, 1, 2, 3 and g(i/3) = vi, for i = 0, 1, 2, 3. Show that the Bernstein
polynomial of degree 3 in t for f is u(t) and the Bernstein polynomial of degree three in t for g
is v(t). (See Exercise 23 of Section 3.1.)
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3.7 Survey of Methods and Software

In this chapter we have considered approximating a function using polynomials and piece-
wise polynomials. The function can be specified by a given defining equation or by pro-
viding points in the plane through which the graph of the function passes. A set of nodes
x0, x1, . . . , xn is given in each case, and more information, such as the value of various
derivatives, may also be required. We need to find an approximating function that satisfies
the conditions specified by these data.

The interpolating polynomial P(x) is the polynomial of least degree that satisfies, for
a function f ,

P(xi) = f (xi), for each i = 0, 1, . . . , n.

Although this interpolating polynomial is unique, it can take many different forms. The
Lagrange form is most often used for interpolating tables when n is small and for deriving
formulas for approximating derivatives and integrals. Neville’s method is used for eval-
uating several interpolating polynomials at the same value of x. Newton’s forms of the
polynomial are more appropriate for computation and are also used extensively for deriv-
ing formulas for solving differential equations. However, polynomial interpolation has the
inherent weaknesses of oscillation, particularly if the number of nodes is large. In this case
there are other methods that can be better applied.

The Hermite polynomials interpolate a function and its derivative at the nodes. They
can be very accurate but require more information about the function being approximated.
When there are a large number of nodes, the Hermite polynomials also exhibit oscillation
weaknesses.

The most commonly used form of interpolation is piecewise-polynomial interpolation.
If function and derivative values are available, piecewise cubic Hermite interpolation is
recommended. This is the preferred method for interpolating values of a function that is
the solution to a differential equation. When only the function values are available, natural
cubic spline interpolation can be used. This spline forces the second derivative of the spline
to be zero at the endpoints. Other cubic splines require additional data. For example, the
clamped cubic spline needs values of the derivative of the function at the endpoints of the
interval.

Other methods of interpolation are commonly used. Trigonometric interpolation, in
particular the Fast Fourier Transform discussed in Chapter 8, is used with large amounts
of data when the function is assumed to have a periodic nature. Interpolation by rational
functions is also used.

If the data are suspected to be inaccurate, smoothing techniques can be applied, and
some form of least squares fit of data is recommended. Polynomials, trigonometric functions,
rational functions, and splines can be used in least squares fitting of data. We consider these
topics in Chapter 8.

Interpolation routines included in the IMSL Library are based on the book A Practical
Guide to Splines by Carl de Boor [Deb] and use interpolation by cubic splines. There
are cubic splines to minimize oscillations and to preserve concavity. Methods for two-
dimensional interpolation by bicubic splines are also included.

The NAG library contains subroutines for polynomial and Hermite interpolation, for
cubic spline interpolation, and for piecewise cubic Hermite interpolation. NAG also contains
subroutines for interpolating functions of two variables.

The netlib library contains the subroutines to compute the cubic spline with various
endpoint conditions. One package produces the Newton’s divided difference coefficients for
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a discrete set of data points, and there are various routines for evaluating Hermite piecewise
polynomials.

MATLAB can be used to interpolate a discrete set of data points, using either nearest
neighbor interpolation, linear interpolation, cubic spline interpolation, or cubic interpola-
tion. Cubic splines can also be produced.

General references to the methods in this chapter are the books by Powell [Pow] and
by Davis [Da]. The seminal paper on splines is due to Schoenberg [Scho]. Important books
on splines are by Schultz [Schul], De Boor [Deb2], Dierckx [Di], and Schumaker [Schum].
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C H A P T E R

4 Numerical Differentiation and Integration

Introduction
A sheet of corrugated roofing is constructed by pressing a flat sheet of aluminum into one
whose cross section has the form of a sine wave.

A corrugated sheet 4 ft long is needed, the height of each wave is 1 in. from the center
line, and each wave has a period of approximately 2π in. The problem of finding the length
of the initial flat sheet is one of determining the length of the curve given by f (x) = sin x
from x = 0 in. to x = 48 in. From calculus we know that this length is

L =
∫ 48

0

√
1+ (f ′(x))2 dx =

∫ 48

0

√
1+ (cos x)2 dx,

so the problem reduces to evaluating this integral. Although the sine function is one of
the most common mathematical functions, the calculation of its length involves an elliptic
integral of the second kind, which cannot be evaluated explicitly. Methods are developed in
this chapter to approximate the solution to problems of this type. This particular problem
is considered in Exercise 25 of Section 4.4 and Exercise 12 of Section 4.5.

We mentioned in the introduction to Chapter 3 that one reason for using alge-
braic polynomials to approximate an arbitrary set of data is that, given any continuous
function defined on a closed interval, there exists a polynomial that is arbitrarily close to
the function at every point in the interval. Also, the derivatives and integrals of polyno-
mials are easily obtained and evaluated. It should not be surprising, then, that many
procedures for approximating derivatives and integrals use the polynomials that
approximate the function.

173
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4.1 Numerical Differentiation

The derivative of the function f at x0 is

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

This formula gives an obvious way to generate an approximation to f ′(x0); simply compute

f (x0 + h)− f (x0)

h

for small values of h. Although this may be obvious, it is not very successful, due to our
old nemesis round-off error. But it is certainly a place to start.

To approximate f ′(x0), suppose first that x0 ∈ (a, b), where f ∈ C2[a, b], and that
x1 = x0+h for some h �= 0 that is sufficiently small to ensure that x1 ∈ [a, b]. We construct
the first Lagrange polynomial P0,1(x) for f determined by x0 and x1, with its error term:

f (x) = P0,1(x)+ (x − x0)(x − x1)

2! f ′′(ξ(x))

= f (x0)(x − x0 − h)

−h
+ f (x0 + h)(x − x0)

h
+ (x − x0)(x − x0 − h)

2
f ′′(ξ(x)),

for some ξ(x) between x0 and x1. Differentiating gives

f ′(x) = f (x0 + h)− f (x0)

h
+ Dx

[
(x − x0)(x − x0 − h)

2
f ′′(ξ(x))

]

= f (x0 + h)− f (x0)

h
+ 2(x − x0)− h

2
f ′′(ξ(x))

+ (x − x0)(x − x0 − h)

2
Dx(f

′′(ξ(x))).

Deleting the terms involving ξ(x) gives

f ′(x) ≈ f (x0 + h)− f (x0)

h
.

One difficulty with this formula is that we have no information about Dxf
′′(ξ(x)), so the

truncation error cannot be estimated. When x is x0, however, the coefficient of Dxf
′′(ξ(x))

is 0, and the formula simplifies to

f ′(x0) = f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ). (4.1)

Difference equations were used
and popularized by Isaac Newton
in the last quarter of the 17th
century, but many of these
techniques had previously been
developed by Thomas Harriot
(1561–1621) and Henry Briggs
(1561–1630). Harriot made
significant advances in navigation
techniques, and Briggs was the
person most responsible for the
acceptance of logarithms as an
aid to computation.

For small values of h, the difference quotient [f (x0 + h) − f (x0)]/h can be used to
approximate f ′(x0) with an error bounded by M|h|/2, where M is a bound on |f ′′(x)| for x
between x0 and x0+ h. This formula is known as the forward-difference formula if h > 0
(see Figure 4.1) and the backward-difference formula if h < 0.

Example 1 Use the forward-difference formula to approximate the derivative of f (x) = ln x at x0 = 1.8
using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

f (1.8+ h)− f (1.8)

h
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4.1 Numerical Differentiation 175

Figure 4.1
y

xx0

Slope  f �(x0)

Slope h 
f (x0 � h) � f (x0)

x0 � h

with h = 0.1 gives

ln 1.9− ln 1.8

0.1
= 0.64185389− 0.58778667

0.1
= 0.5406722.

Because f ′′(x) = −1/x2 and 1.8 < ξ < 1.9, a bound for this approximation error is

|hf ′′(ξ)|
2

= |h|
2ξ 2

<
0.1

2(1.8)2
= 0.0154321.

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar
manner and the results are shown in Table 4.1.

Table 4.1
h f (1.8+ h)

f (1.8+ h)− f (1.8)

h

|h|
2(1.8)2

0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since f ′(x) = 1/x, the exact value of f ′(1.8) is 0.555, and in this case the error bounds are
quite close to the true approximation error.

To obtain general derivative approximation formulas, suppose that {x0, x1, . . . , xn} are
(n + 1) distinct numbers in some interval I and that f ∈ Cn+1(I). From Theorem 3.3 on
page 112,

f (x) =
n∑

k=0

f (xk)Lk(x)+ (x − x0) · · · (x − xn)

(n+ 1)! f (n+1)(ξ(x)),
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176 C H A P T E R 4 Numerical Differentiation and Integration

for some ξ(x) in I , where Lk(x) denotes the kth Lagrange coefficient polynomial for f at
x0, x1, . . . , xn. Differentiating this expression gives

f ′(x) =
n∑

k=0

f (xk)L
′
k(x)+ Dx

[
(x − x0) · · · (x − xn)

(n+ 1!)
]
f (n+1)(ξ(x))

+ (x − x0) · · · (x − xn)

(n+ 1)! Dx[f (n+1)(ξ(x))].

We again have a problem estimating the truncation error unless x is one of the numbers
xj. In this case, the term multiplying Dx[f (n+1)(ξ(x))] is 0, and the formula becomes

f ′(xj) =
n∑

k=0

f (xk)L
′
k(xj)+ f

(n+1)(ξ(xj))

(n+ 1)!
n∏

k=0
k �=j

(xj − xk), (4.2)

which is called an (n + 1)-point formula to approximate f ′(xj).
In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al-

though the number of functional evaluations and growth of round-off error discourages this
somewhat. The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.
Because

L0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
, we have L′0(x) =

2x − x1 − x2

(x0 − x1)(x0 − x2)
.

Similarly,

L′1(x) =
2x − x0 − x2

(x1 − x0)(x1 − x2)
and L′2(x) =

2x − x0 − x1

(x2 − x0)(x2 − x1)
.

Hence, from Eq. (4.2),

f ′(xj) = f (x0)

[
2xj − x1 − x2

(x0 − x1)(x0 − x2)

]
+ f (x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]

+ f (x2)

[
2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
+ 1

6
f (3)(ξj)

2∏
k=0
k �=j

(xj − xk), (4.3)

for each j = 0, 1, 2, where the notation ξj indicates that this point depends on xj.

Three-Point Formulas

The formulas from Eq. (4.3) become especially useful if the nodes are equally spaced, that
is, when

x1 = x0 + h and x2 = x0 + 2h, for some h �= 0.

We will assume equally-spaced nodes throughout the remainder of this section.
Using Eq. (4.3) with xj = x0, x1 = x0 + h, and x2 = x0 + 2h gives

f ′(x0) = 1

h

[
−3

2
f (x0)+ 2f (x1)− 1

2
f (x2)

]
+ h2

3
f (3)(ξ0).

Doing the same for xj = x1 gives

f ′(x1) = 1

h

[
−1

2
f (x0)+ 1

2
f (x2)

]
− h2

6
f (3)(ξ1),
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4.1 Numerical Differentiation 177

and for xj = x2,

f ′(x2) = 1

h

[
1

2
f (x0)− 2f (x1)+ 3

2
f (x2)

]
+ h2

3
f (3)(ξ2).

Since x1 = x0 + h and x2 = x0 + 2h, these formulas can also be expressed as

f ′(x0) = 1

h

[
−3

2
f (x0)+ 2f (x0 + h)− 1

2
f (x0 + 2h)

]
+ h2

3
f (3)(ξ0),

f ′(x0 + h) = 1

h

[
−1

2
f (x0)+ 1

2
f (x0 + 2h)

]
− h2

6
f (3)(ξ1),

and

f ′(x0 + 2h) = 1

h

[
1

2
f (x0)− 2f (x0 + h)+ 3

2
f (x0 + 2h)

]
+ h2

3
f (3)(ξ2).

As a matter of convenience, the variable substitution x0 for x0+ h is used in the middle
equation to change this formula to an approximation for f ′(x0). A similar change, x0 for
x0 + 2h, is used in the last equation. This gives three formulas for approximating f ′(x0):

f ′(x0) = 1

2h
[−3f (x0)+ 4f (x0 + h)− f (x0 + 2h)] + h2

3
f (3)(ξ0),

f ′(x0) = 1

2h
[−f (x0 − h)+ f (x0 + h)] − h2

6
f (3)(ξ1),

and

f ′(x0) = 1

2h
[f (x0 − 2h)− 4f (x0 − h)+ 3f (x0)] + h2

3
f (3)(ξ2).

Finally, note that the last of these equations can be obtained from the first by simply replacing
h with −h, so there are actually only two formulas:

Three-Point Endpoint Formula

• f ′(x0) = 1

2h
[−3f (x0)+ 4f (x0 + h)− f (x0 + 2h)] + h2

3
f (3)(ξ0), (4.4)

where ξ0 lies between x0 and x0 + 2h.

Three-Point Midpoint Formula

• f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f (3)(ξ1), (4.5)

where ξ1 lies between x0 − h and x0 + h.
Although the errors in both Eq. (4.4) and Eq. (4.5) are O(h2), the error in Eq. (4.5) is

approximately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides of
x0 and Eq. (4.4) uses data on only one side. Note also that f needs to be evaluated at only two
points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 on page 178
gives an illustration of the approximation produced from Eq. (4.5). The approximation in
Eq. (4.4) is useful near the ends of an interval, because information about f outside the
interval may not be available.
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178 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.2
y

x

Slope 
2h [ f (x0 � h) � f (x0 � h)]
1

Slope  f �(x0)

x0 � h x0 � hx0

Five-Point Formulas

The methods presented in Eqs. (4.4) and (4.5) are called three-point formulas (even though
the third point f (x0) does not appear in Eq. (4.5)). Similarly, there are five-point formulas
that involve evaluating the function at two additional points. The error term for these for-
mulas is O(h4). One common five-point formula is used to determine approximations for
the derivative at the midpoint.

Five-Point Midpoint Formula

• f ′(x0) = 1

12h
[f (x0 − 2h)− 8f (x0 − h)+ 8f (x0 + h)− f (x0 + 2h)] + h4

30
f (5)(ξ),

(4.6)

where ξ lies between x0 − 2h and x0 + 2h.

The derivation of this formula is considered in Section 4.2. The other five-point formula is
used for approximations at the endpoints.

Five-Point Endpoint Formula

• f ′(x0) = 1

12h
[−25f (x0)+ 48f (x0 + h)− 36f (x0 + 2h)

+ 16f (x0 + 3h)− 3f (x0 + 4h)] + h4

5
f (5)(ξ), (4.7)

where ξ lies between x0 and x0 + 4h.

Left-endpoint approximations are found using this formula with h > 0 and right-endpoint
approximations with h < 0. The five-point endpoint formula is particularly useful for the
clamped cubic spline interpolation of Section 3.5.

Example 2 Values forf (x) = xex are given in Table 4.2. Use all the applicable three-point and five-point
formulas to approximate f ′(2.0).
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4.1 Numerical Differentiation 179

Solution The data in the table permit us to find four different three-point approximations.
We can use the endpoint formula (4.4) with h = 0.1 or with h = −0.1, and we can use the
midpoint formula (4.5) with h = 0.1 or with h = 0.2.

Table 4.2

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Using the endpoint formula (4.4) with h = 0.1 gives

1

0.2
[−3f (2.0)+ 4f (2.1)− f (2.2] = 5[−3(14.778112)+ 4(17.148957)

− 19.855030)] = 22.032310,

and with h = −0.1 gives 22.054525.
Using the midpoint formula (4.5) with h = 0.1 gives

1

0.2
[f (2.1)− f (1.9)] = 5(17.148957− 12.7703199) = 22.228790,

and with h = 0.2 gives 22.414163.
The only five-point formula for which the table gives sufficient data is the midpoint

formula (4.6) with h = 0.1. This gives

1

1.2
[f (1.8)− 8f (1.9)+ 8f (2.1)− f (2.2)] = 1

1.2
[10.889365− 8(12.703199)

+ 8(17.148957)− 19.855030]
= 22.166999

If we had no other information we would accept the five-point midpoint approximation using
h = 0.1 as the most accurate, and expect the true value to be between that approximation
and the three-point mid-point approximation that is in the interval [22.166, 22.229].

The true value in this case is f ′(2.0) = (2+ 1)e2 = 22.167168, so the approximation
errors are actually:

Three-point endpoint with h = 0.1: 1.35× 10−1;

Three-point endpoint with h = −0.1: 1.13× 10−1;

Three-point midpoint with h = 0.1: −6.16× 10−2;

Three-point midpoint with h = 0.2: −2.47× 10−1;

Five-point midpoint with h = 0.1: 1.69× 10−4.

Methods can also be derived to find approximations to higher derivatives of a function
using only tabulated values of the function at various points. The derivation is algebraically
tedious, however, so only a representative procedure will be presented.

Expand a function f in a third Taylor polynomial about a point x0 and evaluate at x0+h
and x0 − h. Then

f (x0 + h) = f (x0)+ f ′(x0)h+ 1

2
f ′′(x0)h

2 + 1

6
f ′′′(x0)h

3 + 1

24
f (4)(ξ1)h

4

and

f (x0 − h) = f (x0)− f ′(x0)h+ 1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3 + 1

24
f (4)(ξ−1)h

4,

where x0 − h < ξ−1 < x0 < ξ1 < x0 + h.
If we add these equations, the terms involving f ′(x0) and −f ′(x0) cancel, so

f (x0 + h)+ f (x0 − h) = 2f (x0)+ f ′′(x0)h
2 + 1

24
[f (4)(ξ1)+ f (4)(ξ−1)]h4.
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Solving this equation for f ′′(x0) gives

f ′′(x0) = 1

h2
[f (x0 − h)− 2f (x0)+ f (x0 + h)] − h2

24
[f (4)(ξ1)+ f (4)(ξ−1)]. (4.8)

Suppose f (4) is continuous on [x0 − h, x0 + h]. Since 1
2 [f (4)(ξ1) + f (4)(ξ−1)] is between

f (4)(ξ1) and f (4)(ξ−1), the Intermediate Value Theorem implies that a number ξ exists
between ξ1 and ξ−1, and hence in (x0 − h, x0 + h), with

f (4)(ξ) = 1

2

[
f (4)(ξ1)+ f (4)(ξ−1)

]
.

This permits us to rewrite Eq. (4.8) in its final form.

Second Derivative Midpoint Formula

• f ′′(x0) = 1

h2
[f (x0 − h)− 2f (x0)+ f (x0 + h)] − h2

12
f (4)(ξ), (4.9)

for some ξ , where x0 − h < ξ < x0 + h.

If f (4) is continuous on [x0 − h, x0 + h] it is also bounded, and the approximation is O(h2).

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of
f (x) = xex at x = 2.0. Use the second derivative formula (4.9) to approximate f ′′(2.0).

Table 4.3

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Solution The data permits us to determine two approximations for f ′′(2.0). Using (4.9)
with h = 0.1 gives

1

0.01
[f (1.9)− 2f (2.0)+ f (2.1)] = 100[12.703199− 2(14.778112)+ 17.148957]

= 29.593200,

and using (4.9) with h = 0.2 gives

1

0.04
[f (1.8)− 2f (2.0)+ f (2.2)] = 25[10.889365− 2(14.778112)+ 19.855030]

= 29.704275.

Because f ′′(x) = (x + 2)ex, the exact value is f ′′(2.0) = 29.556224. Hence the actual
errors are −3.70× 10−2 and −1.48× 10−1, respectively.

Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. To illustrate the situation, let us examine the three-point midpoint formula Eq. (4.5),

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f (3)(ξ1),

more closely. Suppose that in evaluating f (x0 + h) and f (x0 − h) we encounter round-off
errors e(x0 + h) and e(x0 − h). Then our computations actually use the values f̃ (x0 + h)
and f̃ (x0 − h), which are related to the true values f (x0 + h) and f (x0 − h) by
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f (x0 + h) = f̃ (x0 + h)+ e(x0 + h) and f (x0 − h) = f̃ (x0 − h)+ e(x0 − h).

The total error in the approximation,

f ′(x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h
= e(x0 + h)− e(x0 − h)

2h
− h2

6
f (3)(ξ1),

is due both to round-off error, the first part, and to truncation error. If we assume that the
round-off errors e(x0 ± h) are bounded by some number ε > 0 and that the third derivative
of f is bounded by a number M > 0, then∣∣∣∣∣f ′(x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h

∣∣∣∣∣ ≤ ε

h
+ h2

6
M.

To reduce the truncation error, h2M/6, we need to reduce h. But as h is reduced, the round-
off error ε/h grows. In practice, then, it is seldom advantageous to let h be too small, because
in that case the round-off error will dominate the calculations.

Illustration Consider using the values in Table 4.4 to approximate f ′(0.900), where f (x) = sin x. The
true value is cos 0.900 = 0.62161. The formula

f ′(0.900) ≈ f (0.900+ h)− f (0.900− h)

2h
,

with different values of h, gives the approximations in Table 4.5.

Table 4.4 x sin x x sin x

0.800 0.71736 0.901 0.78395
0.850 0.75128 0.902 0.78457
0.880 0.77074 0.905 0.78643
0.890 0.77707 0.910 0.78950
0.895 0.78021 0.920 0.79560
0.898 0.78208 0.950 0.81342
0.899 0.78270 1.000 0.84147

Table 4.5 Approximation
h to f ′(0.900) Error

0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 −0.00011
0.020 0.62150 −0.00011
0.050 0.62140 −0.00021
0.100 0.62055 −0.00106

The optimal choice for h appears to lie between 0.005 and 0.05. We can use calculus to
verify (see Exercise 29) that a minimum for

e(h) = ε

h
+ h2

6
M,

occurs at h = 3
√

3ε/M, where

M = max
x∈[0.800,1.00]

|f ′′′(x)| = max
x∈[0.800,1.00]

| cos x| = cos 0.8 ≈ 0.69671.

Because values of f are given to five decimal places, we will assume that the round-off
error is bounded by ε = 5× 10−6. Therefore, the optimal choice of h is approximately

h = 3

√
3(0.000005)

0.69671
≈ 0.028,

which is consistent with the results in Table 4.6. �
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In practice, we cannot compute an optimal h to use in approximating the derivative, since
we have no knowledge of the third derivative of the function. But we must remain aware
that reducing the step size will not always improve the approximation. �

We have considered only the round-off error problems that are presented by the three-
point formula Eq. (4.5), but similar difficulties occur with all the differentiation formulas.
The reason can be traced to the need to divide by a power of h. As we found in Section 1.2
(see, in particular, Example 3), division by small numbers tends to exaggerate round-off
error, and this operation should be avoided if possible. In the case of numerical differenti-
ation, we cannot avoid the problem entirely, although the higher-order methods reduce the
difficulty.

Keep in mind that difference
method approximations might be
unstable.

As approximation methods, numerical differentiation is unstable, since the small values
of h needed to reduce truncation error also cause the round-off error to grow. This is the first
class of unstable methods we have encountered, and these techniques would be avoided if it
were possible. However, in addition to being used for computational purposes, the formulas
are needed for approximating the solutions of ordinary and partial-differential equations.

E X E R C I S E S E T 4.1

1. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a. x f (x) f ′(x)

0.5 0.4794
0.6 0.5646
0.7 0.6442

b. x f (x) f ′(x)

0.0 0.00000
0.2 0.74140
0.4 1.3718

2. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a. x f (x) f ′(x)

−0.3 1.9507
−0.2 2.0421
−0.1 2.0601

b. x f (x) f ′(x)

1.0 1.0000
1.2 1.2625
1.4 1.6595

3. The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exer-
cise 1, and find error bounds using the error formulas.

a. f (x) = sin x b. f (x) = ex − 2x2 + 3x − 1

4. The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exer-
cise 2, and find error bounds using the error formulas.

a. f (x) = 2 cos 2x − x b. f (x) = x2 ln x + 1

5. Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x f (x) f ′(x)

1.1 9.025013
1.2 11.02318
1.3 13.46374
1.4 16.44465

b. x f (x) f ′(x)

8.1 16.94410
8.3 17.56492
8.5 18.19056
8.7 18.82091

c. x f (x) f ′(x)

2.9 −4.827866
3.0 −4.240058
3.1 −3.496909
3.2 −2.596792

d. x f (x) f ′(x)

2.0 3.6887983
2.1 3.6905701
2.2 3.6688192
2.3 3.6245909
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6. Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x f (x) f ′(x)

−0.3 −0.27652
−0.2 −0.25074
−0.1 −0.16134

0 0

b. x f (x) f ′(x)

7.4 −68.3193
7.6 −71.6982
7.8 −75.1576
8.0 −78.6974

c. x f (x) f ′(x)

1.1 1.52918
1.2 1.64024
1.3 1.70470
1.4 1.71277

d. x f (x) f ′(x)

−2.7 0.054797
−2.5 0.11342
−2.3 0.65536
−2.1 0.98472

7. The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exer-
cise 5, and find error bounds using the error formulas.

a. f (x) = e2x b. f (x) = x ln x
c. f (x) = x cos x − x2 sin x d. f (x) = 2(ln x)2 + 3 sin x

8. The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exer-
cise 6, and find error bounds using the error formulas.

a. f (x) = e2x − cos 2x b. f (x) = ln(x + 2)− (x + 1)2

c. f (x) = x sin x + x2 cos x d. f (x) = (cos 3x)2 − e2x

9. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a. x f (x) f ′(x)

2.1 −1.709847
2.2 −1.373823
2.3 −1.119214
2.4 −0.9160143
2.5 −0.7470223
2.6 −0.6015966

b. x f (x) f ′(x)

−3.0 9.367879
−2.8 8.233241
−2.6 7.180350
−2.4 6.209329
−2.2 5.320305
−2.0 4.513417

10. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a. x f (x) f ′(x)

1.05 −1.709847
1.10 −1.373823
1.15 −1.119214
1.20 −0.9160143
1.25 −0.7470223
1.30 −0.6015966

b. x f (x) f ′(x)

−3.0 16.08554
−2.8 12.64465
−2.6 9.863738
−2.4 7.623176
−2.2 5.825013
−2.0 4.389056

11. The data in Exercise 9 were taken from the following functions. Compute the actual errors in Exer-
cise 9, and find error bounds using the error formulas and Maple.

a. f (x) = tan x b. f (x) = ex/3 + x2

12. The data in Exercise 10 were taken from the following functions. Compute the actual errors in Exer-
cise 10, and find error bounds using the error formulas and Maple.

a. f (x) = tan 2x b. f (x) = e−x − 1+ x

13. Use the following data and the knowledge that the first five derivatives of f are bounded on [1, 5] by
2, 3, 6, 12 and 23, respectively, to approximate f ′(3) as accurately as possible. Find a bound for the
error.

x 1 2 3 4 5

f (x) 2.4142 2.6734 2.8974 3.0976 3.2804

14. Repeat Exercise 13, assuming instead that the third derivative of f is bounded on [1, 5] by 4.
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15. Repeat Exercise 1 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 3.

16. Repeat Exercise 5 using four-digit chopping arithmetic, and compare the errors to those in
Exercise 7.

17. Repeat Exercise 9 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 11.

18. Consider the following table of data:

x 0.2 0.4 0.6 0.8 1.0

f (x) 0.9798652 0.9177710 0.808038 0.6386093 0.3843735

a. Use all the appropriate formulas given in this section to approximate f ′(0.4) and f ′′(0.4).

b. Use all the appropriate formulas given in this section to approximate f ′(0.6) and f ′′(0.6).

19. Let f (x) = cosπx. Use Eq. (4.9) and the values of f (x) at x = 0.25, 0.5, and 0.75 to approximate
f ′′(0.5). Compare this result to the exact value and to the approximation found in Exercise 15 of
Section 3.5. Explain why this method is particularly accurate for this problem, and find a bound for
the error.

20. Let f (x) = 3xex − cos x. Use the following data and Eq. (4.9) to approximate f ′′(1.3) with h = 0.1
and with h = 0.01.

x 1.20 1.29 1.30 1.31 1.40

f (x) 11.59006 13.78176 14.04276 14.30741 16.86187

Compare your results to f ′′(1.3).

21. Consider the following table of data:

x 0.2 0.4 0.6 0.8 1.0

f (x) 0.9798652 0.9177710 0.8080348 0.6386093 0.3843735

a. Use Eq. (4.7) to approximate f ′(0.2).

b. Use Eq. (4.7) to approximate f ′(1.0).

c. Use Eq. (4.6) to approximate f ′(0.6).

22. Derive an O(h4) five-point formula to approximate f ′(x0) that uses f (x0 − h), f (x0), f (x0 + h),
f (x0 + 2h), and f (x0 + 3h). [Hint: Consider the expression Af (x0 − h) + Bf (x0 + h) + Cf (x0 +
2h)+Df (x0 + 3h). Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.]

23. Use the formula derived in Exercise 22 and the data of Exercise 21 to approximate f ′(0.4) and f ′(0.8).

24. a. Analyze the round-off errors, as in Example 4, for the formula

f ′(x0) = f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ0).

b. Find an optimal h > 0 for the function given in Example 2.

25. In Exercise 10 of Section 3.4 data were given describing a car traveling on a straight road. That
problem asked to predict the position and speed of the car when t = 10 s. Use the following times and
positions to predict the speed at each time listed.

Time 0 3 5 8 10 13

Distance 0 225 383 623 742 993

26. In a circuit with impressed voltage E(t) and inductance L, Kirchhoff’s first law gives the relationship

E(t) = L
di

dt
+ Ri,
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where R is the resistance in the circuit and i is the current. Suppose we measure the current for several
values of t and obtain:

t 1.00 1.01 1.02 1.03 1.0

i 3.10 3.12 3.14 3.18 3.24

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the
resistance is 0.142 ohms. Approximate the voltage E(t) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.

27. All calculus students know that the derivative of a function f at x can be defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Choose your favorite function f , nonzero number x, and computer or calculator. Generate approxi-
mations f ′n(x) to f ′(x) by

f ′n(x) =
f (x + 10−n)− f (x)

10−n
,

for n = 1, 2, . . . , 20, and describe what happens.

28. Derive a method for approximating f ′′′(x0)whose error term is of order h2 by expanding the function
f in a fourth Taylor polynomial about x0 and evaluating at x0 ± h and x0 ± 2h.

29. Consider the function

e(h) = ε

h
+ h2

6
M,

where M is a bound for the third derivative of a function. Show that e(h) has a minimum at 3
√

3ε/M.

4.2 Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while using low-
order formulas. Although the name attached to the method refers to a paper written by
L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much older.
An interesting article regarding the history and application of extrapolation can be found
in [Joy].

Lewis Fry Richardson
(1881–1953) was the first person
to systematically apply
mathematics to weather
prediction while working in
England for the Meteorological
Office. As a conscientious
objector during World War I, he
wrote extensively about the
economic futility of warfare,
using systems of differential
equations to model rational
interactions between countries.
The extrapolation technique that
bears his name was the
rediscovery of a technique with
roots that are at least as old as
Christiaan Hugyens
(1629–1695), and possibly
Archimedes (287–212 b.c.e.).

Extrapolation can be applied whenever it is known that an approximation technique
has an error term with a predictable form, one that depends on a parameter, usually the step
size h. Suppose that for each number h �= 0 we have a formula N1(h) that approximates an
unknown constant M, and that the truncation error involved with the approximation has the
form

M − N1(h) = K1h+ K2h2 + K3h3 + · · · ,

for some collection of (unknown) constants K1, K2, K3, . . . .
The truncation error is O(h), so unless there was a large variation in magnitude among

the constants K1, K2, K3, . . . ,

M − N1(0.1) ≈ 0.1K1, M − N1(0.01) ≈ 0.01K1,

and, in general, M − N1(h) ≈ K1h .
The object of extrapolation is to find an easy way to combine these rather inaccu-

rate O(h) approximations in an appropriate way to produce formulas with a higher-order
truncation error.
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Suppose, for example, we can combine the N1(h) formulas to produce an O(h2)

approximation formula, N2(h), for M with

M − N2(h) = K̂2h2 + K̂3h3 + · · · ,

for some, again unknown, collection of constants K̂2, K̂3, . . . . Then we would have

M − N2(0.1) ≈ 0.01K̂2, M − N2(0.01) ≈ 0.0001K̂2,

and so on. If the constants K1 and K̂2 are roughly of the same magnitude, then the N2(h)
approximations would be much better than the corresponding N1(h) approximations. The
extrapolation continues by combining the N2(h) approximations in a manner that produces
formulas with O(h3) truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the O(h)
formula for approximating M

M = N1(h)+ K1h+ K2h2 + K3h3 + · · · . (4.10)

The formula is assumed to hold for all positive h, so we replace the parameter h by half its
value. Then we have a second O(h) approximation formula

M = N1

(
h

2

)
+ K1

h

2
+ K2

h2

4
+ K3

h3

8
+ · · · . (4.11)

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K1 and gives

M = N1

(
h

2

)
+
[

N1

(
h

2

)
− N1(h)

]
+ K2

(
h2

2
− h2

)
+ K3

(
h3

4
− h3

)
+ · · · . (4.12)

Define

N2(h) = N1

(
h

2

)
+
[

N1

(
h

2

)
− N1(h)

]
.

Then Eq. (4.12) is an O(h2) approximation formula for M:

M = N2(h)− K2

2
h2 − 3K3

4
h3 − · · · . (4.13)

Example 1 In Example 1 of Section 4.1 we use the forward-difference method with h = 0.1 and
h = 0.05 to find approximations to f ′(1.8) for f (x) = ln(x). Assume that this formula has
truncation error O(h) and use extrapolation on these values to see if this results in a better
approximation.

Solution In Example 1 of Section 4.1 we found that

with h = 0.1: f ′(1.8) ≈ 0.5406722, and with h = 0.05: f ′(1.8) ≈ 0.5479795.

This implies that

N1(0.1) = 0.5406722 and N1(0.05) = 0.5479795.

Extrapolating these results gives the new approximation

N2(0.1) = N1(0.05)+ (N1(0.05)− N1(0.1)) = 0.5479795+ (0.5479795− 0.5406722)

= 0.555287.

The h = 0.1 and h = 0.05 results were found to be accurate to within 1.5 × 10−2 and
7.7×10−3, respectively. Because f ′(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate
to within 2.7× 10−4.
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Extrapolation can be applied whenever the truncation error for a formula has the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. Many formulas used
for extrapolation have truncation errors that contain only even powers of h, that is, have the
form

M = N1(h)+ K1h2 + K2h4 + K3h6 + · · · . (4.14)

The extrapolation is much more effective than when all powers of h are present because the
averaging process produces results with errors O(h2), O(h4), O(h6), . . . , with essentially
no increase in computation, over the results with errors, O(h), O(h2), O(h3), . . . .

Assume that approximation has the form of Eq. (4.14 ). Replacing h with h/2 gives the
O(h2) approximation formula

M = N1

(
h

2

)
+ K1

h2

4
+ K2

h4

16
+ K3

h6

64
+ · · · .

Subtracting Eq. (4.14) from 4 times this equation eliminates the h2 term,

3M =
[

4N1

(
h

2

)
− N1(h)

]
+ K2

(
h4

4
− h4

)
+ K3

(
h6

16
− h6

)
+ · · · .

Dividing this equation by 3 produces an O(h4) formula

M = 1

3

[
4N1

(
h

2

)
− N1(h)

]
+ K2

3

(
h4

4
− h4

)
+ K3

3

(
h6

16
− h6

)
+ · · · .

Defining

N2(h) = 1

3

[
4N1

(
h

2

)
− N1(h)

]
= N1

(
h

2

)
+ 1

3

[
N1

(
h

2

)
− N1(h)

]
,

produces the approximation formula with truncation error O(h4):

M = N2(h)− K2
h4

4
− K3

5h6

16
+ · · · . (4.15)

Now replace h in Eq. (4.15) with h/2 to produce a second O(h4) formula

M = N2

(
h

2

)
− K2

h4

64
− K3

5h6

1024
− · · · .

Subtracting Eq. (4.15 ) from 16 times this equation eliminates the h4 term and gives

15M =
[

16N2

(
h

2

)
− N2(h)

]
+ K3

15h6

64
+ · · · .

Dividing this equation by 15 produces the new O(h6) formula

M = 1

15

[
16N2

(
h

2

)
− N2(h)

]
+ K3

h6

64
+ · · · .

We now have the O(h6) approximation formula

N3(h) = 1

15

[
16N2

(
h

2

)
− N2(h)

]
= N2

(
h

2

)
+ 1

15

[
N2

(
h

2

)
− N2(h)

]
.
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Continuing this procedure gives, for each j = 2, 3, . . . , the O(h2 j) approximation

Nj(h) = Nj−1

(
h

2

)
+ Nj−1(h/2)− Nj−1(h)

4 j−1 − 1
.

Table 4.6 shows the order in which the approximations are generated when

M = N1(h)+ K1h2 + K2h4 + K3h6 + · · · . (4.16)

It is conservatively assumed that the true result is accurate at least to within the agreement
of the bottom two results in the diagonal, in this case, to within |N3(h)− N4(h)|.

Table 4.6 O(h2) O(h4) O(h6) O(h8)

1: N1(h)

2: N1(
h
2 ) 3: N2(h)

4: N1(
h
4 ) 5: N2(

h
2 ) 6: N3(h)

7: N1(
h
8 ) 8: N2(

h
4 ) 9: N3(

h
2 ) 10: N4(h)

Example 2 Taylor’s theorem can be used to show that centered-difference formula in Eq. (4.5) to
approximate f ′(x0) can be expressed with an error formula:

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

120
f (5)(x0)− · · · .

Find approximations of order O(h2), O(h4), and O(h6) for f ′(2.0) when f (x) = xex and
h = 0.2.

Solution The constants K1 = −f ′′′(x0)/6, K2 = −f (5)(x0)/120, · · · , are not likely to be
known, but this is not important. We only need to know that these constants exist in order
to apply extrapolation.

We have the O(h2) approximation

f ′(x0) = N1(h)− h2

6
f ′′′(x0)− h4

120
f (5)(x0)− · · · , (4.17)

where

N1(h) = 1

2h
[f (x0 + h)− f (x0 − h)].

This gives us the first O(h2) approximations

N1(0.2) = 1

0.4
[f (2.2)− f (1.8)] = 2.5(19.855030− 10.889365) = 22.414160,

and

N1(0.1) = 1

0.2
[f (2.1)− f (1.9)] = 5(17.148957− 12.703199) = 22.228786.

Combining these to produce the first O(h4) approximation gives

N2(0.2) = N1(0.1)+ 1

3
(N1(0.1)− N1(0.2))

= 22.228786+ 1

3
(22.228786− 22.414160) = 22.166995.
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To determine an O(h6) formula we need another O(h4) result, which requires us to find the
third O(h2) approximation

N1(0.05) = 1

0.1
[f (2.05)− f (1.95)] = 10(15.924197− 13.705941) = 22.182564.

We can now find the O(h4) approximation

N2(0.1) = N1(0.05)+ 1

3
(N1(0.05)− N1(0.1))

= 22.182564+ 1

3
(22.182564− 22.228786) = 22.167157.

and finally the O(h6) approximation

N3(0.2) = N2(0.1)+ 1

15
(N2(0.1)− N1(0.2))

= 22.167157+ 1

15
(22.167157− 22.166995) = 22.167168.

We would expect the final approximation to be accurate to at least the value 22.167 because
the N2(0.2) and N3(0.2) give this same value. In fact, N3(0.2) is accurate to all the listed
digits.

Each column beyond the first in the extrapolation table is obtained by a simple av-
eraging process, so the technique can produce high-order approximations with minimal
computational cost. However, as k increases, the round-off error in N1(h/2k) will generally
increase because the instability of numerical differentiation is related to the step size h/2k .
Also, the higher-order formulas depend increasingly on the entry to their immediate left in
the table, which is the reason we recommend comparing the final diagonal entries to ensure
accuracy.

In Section 4.1, we discussed both three- and five-point methods for approximating
f ′(x0) given various functional values of f . The three-point methods were derived by
differentiating a Lagrange interpolating polynomial for f . The five-point methods can be
obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to
more easily derive these formulas, as illustrated below.

Illustration Suppose we expand the function f in a fourth Taylor polynomial about x0. Then

f (x) =f (x0)+ f ′(x0)(x − x0)+ 1

2
f ′′(x0)(x − x0)

2 + 1

6
f ′′′(x0)(x − x0)

3

+ 1

24
f (4)(x0)(x − x0)

4 + 1

120
f (5)(ξ)(x − x0)

5,

for some number ξ between x and x0. Evaluating f at x0 + h and x0 − h gives

f (x0 + h) =f (x0)+ f ′(x0)h+ 1

2
f ′′(x0)h

2 + 1

6
f ′′′(x0)h

3

+ 1

24
f (4)(x0)h

4 + 1

120
f (5)(ξ1)h

5 (4.18)

and

f (x0 − h) =f (x0)− f ′(x0)h+ 1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3

+ 1

24
f (4)(x0)h

4 − 1

120
f (5)(ξ2)h

5, (4.19)

where x0 − h < ξ2 < x0 < ξ1 < x0 + h.
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Subtracting Eq. (4.19) from Eq. (4.18) gives a new approximation for f ′(x).

f (x0 + h)− f (x0 − h) = 2hf ′(x0)+ h3

3
f ′′′(x0)+ h5

120
[f (5)(ξ1)+ f (5)(ξ2)], (4.20)

which implies that

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

240
[f (5)(ξ1)+ f (5)(ξ2)].

If f (5) is continuous on [x0 − h, x0 + h], the Intermediate Value Theorem 1.11 implies that
a number ξ̃ in (x0 − h, x0 + h) exists with

f (5)(ξ̃ ) = 1

2

[
f (5)(ξ1)+ f (5)(ξ2)

]
.

As a consequence,we have the O(h2) approximation

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

120
f (5)(ξ̃ ). (4.21)

Although the approximation in Eq. (4.21) is the same as that given in the three-point for-
mula in Eq. (4.5), the unknown evaluation point occurs now in f (5), rather than in f ′′′.
Extrapolation takes advantage of this by first replacing h in Eq. (4.21) with 2h to give the
new formula

f ′(x0) = 1

4h
[f (x0 + 2h)− f (x0 − 2h)] − 4h2

6
f ′′′(x0)− 16h4

120
f (5)(ξ̂ ), (4.22)

where ξ̂ is between x0 − 2h and x0 + 2h.

Multiplying Eq. (4.21) by 4 and subtracting Eq. (4.22) produces

3f ′(x0) = 2

h
[f (x0 + h)− f (x0 − h)] − 1

4h
[f (x0 + 2h)− f (x0 − 2h)]

− h4

30
f (5)(ξ̃ )+ 2h4

15
f (5)(ξ̂ ).

Even if f (5) is continuous on [x0 − 2h, x0 + 2h], the Intermediate Value Theorem 1.11
cannot be applied as we did to derive Eq. (4.21) because here we have the difference of
terms involving f (5). However, an alternative method can be used to show that f (5)(ξ̃ ) and
f (5)(ξ̂ ) can still be replaced by a common value f (5)(ξ). Assuming this and dividing by 3
produces the five-point midpoint formula Eq. (4.6) that we saw in Section 4.1

f ′(x0) = 1

12h
[f (x0 − 2h)− 8f (x0 − h)+ 8f (x0 + h)− f (x0 + 2h)] + h4

30
f (5)(ξ). �

Other formulas for first and higher derivatives can be derived in a similar manner. See,
for example, Exercise 8.

The technique of extrapolation is used throughout the text. The most prominent appli-
cations occur in approximating integrals in Section 4.5 and for determining approximate
solutions to differential equations in Section 5.8.
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E X E R C I S E S E T 4.2

1. Apply the extrapolation process described in Example 1 to determine N3(h), an approximation to
f ′(x0), for the following functions and stepsizes.

a. f (x) = ln x, x0 = 1.0, h = 0.4

b. f (x) = x + ex , x0 = 0.0, h = 0.4

c. f (x) = 2x sin x, x0 = 1.05, h = 0.4

d. f (x) = x3 cos x, x0 = 2.3, h = 0.4

2. Add another line to the extrapolation table in Exercise 1 to obtain the approximation N4(h).

3. Repeat Exercise 1 using four-digit rounding arithmetic.

4. Repeat Exercise 2 using four-digit rounding arithmetic.

5. The following data give approximations to the integral

M =
∫ π

0
sin x dx.

N1(h) = 1.570796, N1

(
h

2

)
= 1.896119, N1

(
h

4

)
= 1.974232, N1

(
h

8

)
= 1.993570.

Assuming M = N1(h) + K1h2 + K2h4 + K3h6 + K4h8 + O(h10), construct an extrapolation table to
determine N4(h).

6. The following data can be used to approximate the integral

M =
∫ 3π/2

0
cos x dx.

N1(h) = 2.356194, N1

(
h

2

)
= −0.4879837,

N1

(
h

4

)
= −0.8815732, N1

(
h

8

)
= −0.9709157.

Assume a formula exists of the type given in Exercise 5 and determine N4(h).

7. Show that the five-point formula in Eq. (4.6) applied to f (x) = xex at x0 = 2.0 gives N2(0.2) in Table
4.6 when h = 0.1 and N2(0.1) when h = 0.05.

8. The forward-difference formula can be expressed as

f ′(x0) = 1

h
[f (x0 + h)− f (x0)] − h

2
f ′′(x0)− h2

6
f ′′′(x0)+ O(h3).

Use extrapolation to derive an O(h3) formula for f ′(x0).

9. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h)+ K1h+ K2h2 + K3h3 + · · · ,

for some constants K1, K2, K3, . . . . Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h3)

approximation to M.

10. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h)+ K1h2 + K2h4 + K3h6 + · · · ,

for some constants K1, K2, K3, . . . . Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h6)

approximation to M.

11. In calculus, we learn that e = limh→0(1+ h)1/h.

a. Determine approximations to e corresponding to h = 0.04, 0.02, and 0.01.

b. Use extrapolation on the approximations, assuming that constants K1, K2, . . . exist with
e = (1 + h)1/h + K1h + K2h2 + K3h3 + · · · , to produce an O(h3) approximation to e, where
h = 0.04.

c. Do you think that the assumption in part (b) is correct?
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12. a. Show that

lim
h→0

(
2+ h

2− h

)1/h

= e.

b. Compute approximations to e using the formula N(h) = ( 2+h
2−h

)1/h
, for h = 0.04, 0.02, and 0.01.

c. Assume that e = N(h)+K1h+K2h2 +K3h3 + · · · . Use extrapolation, with at least 16 digits of
precision, to compute an O(h3) approximation to e with h = 0.04. Do you think the assumption
is correct?

d. Show that N(−h) = N(h).

e. Use part (d) to show that K1 = K3 = K5 = · · · = 0 in the formula

e = N(h)+ K1h+ K2h2 + K3h3K4h4 + K5h5 + · · · ,

so that the formula reduces to

e = N(h)+ K2h2 + K4h4 + K6h6 + · · · .

f. Use the results of part (e) and extrapolation to compute an O(h6) approximation to e with
h = 0.04.

13. Suppose the following extrapolation table has been constructed to approximate the number M with
M = N1(h)+ K1h2 + K2h4 + K3h6:

N1(h)

N1

(
h

2

)
N2(h)

N1

(
h

4

)
N2

(
h

2

)
N3(h)

a. Show that the linear interpolating polynomial P0,1(h) through (h2, N1(h)) and (h2/4, N1(h/2))
satisfies P0,1(0) = N2(h). Similarly, show that P1,2(0) = N2(h/2).

b. Show that the linear interpolating polynomial P0,2(h) through (h4, N2(h)) and (h4/16, N2(h/2))
satisfies P0,2(0) = N3(h).

14. Suppose that N1(h) is a formula that produces O(h) approximations to a number M and that

M = N1(h)+ K1h+ K2h2 + · · · ,

for a collection of positive constants K1, K2, . . . . Then N1(h), N1(h/2), N1(h/4), . . . are all lower
bounds for M. What can be said about the extrapolated approximations N2(h), N3(h), . . .?

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit circle
were used by Archimedes before 200 b.c.e. to approximate π , the circumference of a semicircle.
Geometry can be used to show that the sequence of inscribed and circumscribed semiperimeters {pk}
and {Pk}, respectively, satisfy

pk = k sin
(π

k

)
and Pk = k tan

(π
k

)
,

with pk < π < Pk , whenever k ≥ 4.

a. Show that p4 = 2
√

2 and P4 = 4.

b. Show that for k ≥ 4, the sequences satisfy the recurrence relations

P2k = 2pkPk

pk + Pk
and p2k =

√
pkP2k .

c. Approximate π to within 10−4 by computing pk and Pk until Pk − pk < 10−4.
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d. Use Taylor Series to show that

π = pk + π
3

3!
(

1

k

)2

− π
5

5!
(

1

k

)4

+ · · ·

and

π = Pk − π
3

3

(
1

k

)2

+ 2π 5

15

(
1

k

)4

− · · · .

e. Use extrapolation with h = 1/k to better approximate π .

4.3 Elements of Numerical Integration

The need often arises for evaluating the definite integral of a function that has no explicit
antiderivative or whose antiderivative is not easy to obtain. The basic method involved in
approximating

∫ b
a f (x) dx is called numerical quadrature. It uses a sum

∑n
i=0 aif (xi) to

approximate
∫ b

a f (x) dx.
The methods of quadrature in this section are based on the interpolation polynomials

given in Chapter 3. The basic idea is to select a set of distinct nodes {x0, . . . , xn} from the
interval [a, b]. Then integrate the Lagrange interpolating polynomial

Pn(x) =
n∑

i=0

f (xi)Li(x)

and its truncation error term over [a, b] to obtain∫ b

a
f (x) dx =

∫ b

a

n∑
i=0

f (xi)Li(x) dx +
∫ b

a

n∏
i=0

(x − xi)
f (n+1)(ξ(x))

(n+ 1)! dx

=
n∑

i=0

aif (xi)+ 1

(n+ 1)!
∫ b

a

n∏
i=0

(x − xi)f
(n+1)(ξ(x)) dx,

where ξ(x) is in [a, b] for each x and

ai =
∫ b

a
Li(x) dx, for each i = 0, 1, . . . , n.

The quadrature formula is, therefore,∫ b

a
f (x) dx ≈

n∑
i=0

aif (xi),

with error given by

E(f ) = 1

(n+ 1)!
∫ b

a

n∏
i=0

(x − xi)f
(n+1)(ξ(x)) dx.

Before discussing the general situation of quadrature formulas, let us consider formulas
produced by using first and second Lagrange polynomials with equally-spaced nodes. This
gives the Trapezoidal rule and Simpson’s rule, which are commonly introduced in calculus
courses.
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TheTrapezoidal Rule

To derive the Trapezoidal rule for approximating
∫ b

a f (x) dx, let x0 = a, x1 = b, h = b− a
and use the linear Lagrange polynomial:

P1(x) = (x − x1)

(x0 − x1)
f (x0)+ (x − x0)

(x1 − x0)
f (x1).

Then ∫ b

a
f (x) dx =

∫ x1

x0

[
(x − x1)

(x0 − x1)
f (x0)+ (x − x0)

(x1 − x0)
f (x1)

]
dx

+ 1

2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx. (4.23)

The product (x− x0)(x− x1) does not change sign on [x0, x1], so the Weighted Mean Value
Theorem for Integrals 1.13 can be applied to the error term to give, for some ξ in (x0, x1),∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx = f ′′(ξ)
∫ x1

x0

(x − x0)(x − x1) dx

= f ′′(ξ)
[

x3

3
− (x1 + x0)

2
x2 + x0x1x

]x1

x0

= −h3

6
f ′′(ξ).

Consequently, Eq. (4.23) implies that∫ b

a
f (x) dx =

[
(x − x1)

2

2(x0 − x1)
f (x0)+ (x − x0)

2

2(x1 − x0)
f (x1)

]x1

x0

− h3

12
f ′′(ξ)

= (x1 − x0)

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ).

Using the notation h = x1 − x0 gives the following rule:

Trapezoidal Rule: ∫ b

a
f (x) dx = h

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ).

This is called the Trapezoidal rule because when f is a function with positive values,

When we use the term trapezoid
we mean a four-sided figure that
has at least two of its sides
parallel. The European term for
this figure is trapezium. To further
confuse the issue, the European
word trapezoidal refers to a
four-sided figure with no sides
equal, and the American word for
this type of figure is trapezium.

∫ b
a f (x) dx is approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3
y

xa � x0 x1 � b

y � f (x)

y � P1(x)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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The error term for the Trapezoidal rule involves f ′′, so the rule gives the exact
result when applied to any function whose second derivative is identically zero, that is, any
polynomial of degree one or less.

Simpson’s Rule

Simpson’s rule results from integrating over [a, b] the second Lagrange polynomial with
equally-spaced nodes x0 = a, x2 = b, and x1 = a + h, where h = (b − a)/2. (See
Figure 4.4.)

Figure 4.4
y

xa � x0 x2 � bx1

y � f (x)

y � P2(x)

Therefore∫ b

a
f (x) dx =

∫ x2

x0

[
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0)+ (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+ (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2)

]
dx

+
∫ x2

x0

(x − x0)(x − x1)(x − x2)

6
f (3)(ξ(x)) dx.

Deriving Simpson’s rule in this manner, however, provides only an O(h4) error term involv-
ing f (3). By approaching the problem in another way, a higher-order term involving f (4)

can be derived.
To illustrate this alternative method, suppose that f is expanded in the third Taylor

polynomial about x1. Then for each x in [x0, x2], a number ξ(x) in (x0, x2) exists with

f (x) = f (x1)+f ′(x1)(x−x1)+ f
′′(x1)

2
(x−x1)

2+ f
′′′(x1)

6
(x−x1)

3+ f
(4)(ξ(x))

24
(x−x1)

4

and ∫ x2

x0

f (x) dx =
[
f (x1)(x − x1)+ f

′(x1)

2
(x − x1)

2 + f
′′(x1)

6
(x − x1)

3

+ f
′′′(x1)

24
(x − x1)

4

]x2

x0

+ 1

24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx. (4.24)
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Because (x − x1)
4 is never negative on [x0, x2], the Weighted Mean Value Theorem for

Integrals 1.13 implies that

1

24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx = f (4)(ξ1)

24

∫ x2

x0

(x − x1)
4 dx = f (4)(ξ1)

120
(x − x1)

5

]x2

x0

,

for some number ξ1 in (x0, x2).
However, h = x2 − x1 = x1 − x0, so

(x2 − x1)
2 − (x0 − x1)

2 = (x2 − x1)
4 − (x0 − x1)

4 = 0,

whereas

(x2 − x1)
3 − (x0 − x1)

3 = 2h3 and (x2 − x1)
5 − (x0 − x1)

5 = 2h5.

Consequently, Eq. (4.24) can be rewritten as

∫ x2

x0

f (x) dx = 2hf (x1)+ h3

3
f ′′(x1)+ f

(4)(ξ1)

60
h5.

If we now replace f ′′(x1) by the approximation given in Eq. (4.9) of Section 4.1, we
have∫ x2

x0

f (x) dx = 2hf (x1)+ h3

3

{
1

h2
[f (x0)− 2f (x1)+ f (x2)] − h2

12
f (4)(ξ2)

}
+ f

(4)(ξ1)

60
h5

= h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

12

[
1

3
f (4)(ξ2)− 1

5
f (4)(ξ1)

]
.

It can be shown by alternative methods (see Exercise 24) that the values ξ1 and ξ2 in this
expression can be replaced by a common value ξ in (x0, x2). This gives Simpson’s rule.

Simpson’s Rule:
∫ x2

x0

f (x) dx = h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

90
f (4)(ξ).

Thomas Simpson (1710–1761)
was a self-taught mathematician
who supported himself during his
early years as a weaver. His
primary interest was probability
theory, although in 1750 he
published a two-volume calculus
book entitled The Doctrine and
Application of Fluxions.

The error term in Simpson’s rule involves the fourth derivative of f , so it gives exact
results when applied to any polynomial of degree three or less.

Example 1 Compare the Trapezoidal rule and Simpson’s rule approximations to
∫ 2

0
f (x) dx when f (x)

is
(a) x2 (b) x4 (c) (x + 1)−1

(d)
√

1+ x2 (e) sin x (f) ex

Solution On [0, 2] the Trapezoidal and Simpson’s rule have the forms

Trapezoid:
∫ 2

0
f (x) dx ≈ f (0)+ f (2) and

Simpson’s:
∫ 2

0
f (x) dx ≈ 1

3
[f (0)+ 4f (1)+ f (2)].
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When f (x) = x2 they give

Trapezoid:
∫ 2

0
f (x) dx ≈ 02 + 22 = 4 and

Simpson’s:
∫ 2

0
f (x) dx ≈ 1

3
[(02)+ 4 · 12 + 22] = 8

3
.

The approximation from Simpson’s rule is exact because its truncation error involves f (4),
which is identically 0 when f (x) = x2.

The results to three places for the functions are summarized in Table 4.7. Notice that
in each instance Simpson’s Rule is significantly superior.

Table 4.7 (a) (b) (c) (d) (e) (f)

f (x) x2 x4 (x + 1)−1
√

1+ x2 sin x ex

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

Measuring Precision

The standard derivation of quadrature error formulas is based on determining the class of
polynomials for which these formulas produce exact results. The next definition is used to
facilitate the discussion of this derivation.

The improved accuracy of
Simpson’s rule over the
Trapezoidal rule is intuitively
explained by the fact that
Simpson’s rule includes a
midpoint evaluation that provides
better balance to the
approximation.

Definition 4.1 The degree of accuracy, or precision, of a quadrature formula is the largest positive integer
n such that the formula is exact for xk , for each k = 0, 1, . . . , n.

Definition 4.1 implies that the Trapezoidal and Simpson’s rules have degrees of preci-
sion one and three, respectively.

Integration and summation are linear operations; that is,∫ b

a
(αf (x)+ βg(x)) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

and

n∑
i=0

(αf (xi)+ βg(xi)) = α
n∑

i=0

f (xi)+ β
n∑

i=0

g(xi),

for each pair of integrable functions f and g and each pair of real constants α and β. This
implies (see Exercise 25) that:

• The degree of precision of a quadrature formula is n if and only if the error is zero for
all polynomials of degree k = 0, 1, . . . , n, but is not zero for some polynomial of degree
n+ 1.

The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-
Cotes formulas. There are two types of Newton-Cotes formulas, open and closed.

The open and closed terminology
for methods implies that the open
methods use as nodes only points
in the open interval, (a, b) to
approximate

∫ b

a f (x) dx. The
closed methods include the points
a and b of the closed interval
[a, b] as nodes.
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Closed Newton-Cotes Formulas

The (n+1)-point closed Newton-Cotes formula uses nodes xi = x0+ ih, for i = 0, 1, . . . , n,
where x0 = a, xn = b and h = (b − a)/n. (See Figure 4.5.) It is called closed because the
endpoints of the closed interval [a, b] are included as nodes.

Figure 4.5
y

xxn�1a � x0 x1 x2 xn � b

y = Pn(x)
y = f (x)

The formula assumes the form∫ b

a
f (x) dx ≈

n∑
i=0

aif (xi),

where

ai =
∫ xn

x0

Li(x) dx =
∫ xn

x0

n∏
j=0
j �=i

(x − xj)

(xi − xj)
dx.

Roger Cotes (1682–1716) rose
from a modest background to
become, in 1704, the first
Plumian Professor at Cambridge
University. He made advances in
numerous mathematical areas
including numerical methods for
interpolation and integration.
Newton is reputed to have said of
Cotes …if he had lived we might
have known something.

The following theorem details the error analysis associated with the closed Newton-
Cotes formulas. For a proof of this theorem, see [IK], p. 313.

Theorem 4.2 Suppose that
∑n

i=0 aif (xi) denotes the (n + 1)-point closed Newton-Cotes formula with
x0 = a, xn = b, and h = (b− a)/n. There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+3f (n+2)(ξ)

(n+ 2)!
∫ n

0
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+2f (n+1)(ξ)

(n+ 1)!
∫ n

0
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+1[a, b].
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4.3 Elements of Numerical Integration 199

Note that when n is an even integer, the degree of precision is n + 1, although the
interpolation polynomial is of degree at most n. When n is odd, the degree of precision is
only n.

Some of the common closed Newton-Cotes formulas with their error terms are listed.
Note that in each case the unknown value ξ lies in (a, b).

n = 1: Trapezoidal rule

∫ x1

x0

f (x) dx = h

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ), where x0 < ξ < x1. (4.25)

n = 2: Simpson’s rule

∫ x2

x0

f (x) dx = h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

90
f (4)(ξ), where x0 < ξ < x2.

(4.26)

n = 3: Simpson’s Three-Eighths rule

∫ x3

x0

f (x) dx = 3h

8
[f (x0)+ 3f (x1)+ 3f (x2)+ f (x3)] − 3h5

80
f (4)(ξ), (4.27)

where x0 < ξ < x3.

n = 4:

∫ x4

x0

f (x) dx = 2h

45
[7f (x0)+ 32f (x1)+ 12f (x2)+ 32f (x3)+ 7f (x4)] − 8h7

945
f (6)(ξ),

where x0 < ξ < x4. (4.28)

Open Newton-Cotes Formulas

The open Newton-Cotes formulas do not include the endpoints of [a, b] as nodes. They use
the nodes xi = x0+ ih, for each i = 0, 1, . . . , n, where h = (b− a)/(n+ 2) and x0 = a+ h.
This implies that xn = b − h, so we label the endpoints by setting x−1 = a and xn+1 = b,
as shown in Figure 4.6 on page 200. Open formulas contain all the nodes used for the
approximation within the open interval (a, b). The formulas become

∫ b

a
f (x) dx =

∫ xn+1

x−1

f (x) dx ≈
n∑

i=0

aif (xi),

where

ai =
∫ b

a
Li(x) dx.
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200 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.6

y

xa � x�1 xn�1 � bx0 x1 x2 xn

y = Pn(x)

y = f (x)

The following theorem is analogous to Theorem 4.2; its proof is contained in [IK],
p. 314.

Theorem 4.3 Suppose that
∑n

i=0 aif (xi) denotes the (n + 1)-point open Newton-Cotes formula with
x−1 = a, xn+1 = b, and h = (b− a)/(n+ 2). There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+3f (n+2)(ξ)

(n+ 2)!
∫ n+1

−1
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+2f (n+1)(ξ)

(n+ 1)!
∫ n+1

−1
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+1[a, b].

Notice, as in the case of the closed methods, we have the degree of precision compar-
atively higher for the even methods than for the odd methods.

Some of the common open Newton-Cotes formulas with their error terms are as
follows:

n = 0: Midpoint rule

∫ x1

x−1

f (x) dx = 2hf (x0)+ h3

3
f ′′(ξ), where x−1 < ξ < x1. (4.29)

n = 1:

∫ x2

x−1

f (x) dx = 3h

2
[f (x0)+ f (x1)] + 3h3

4
f ′′(ξ), where x−1 < ξ < x2. (4.30)
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n = 2:

∫ x3

x−1

f (x) dx = 4h

3
[2f (x0)− f (x1)+ 2f (x2)] + 14h5

45
f (4)(ξ), (4.31)

where x−1 < ξ < x3.

n = 3:

∫ x4

x−1

f (x) dx = 5h

24
[11f (x0)+ f (x1)+ f (x2)+ 11f (x3)] + 95

144
h5f (4)(ξ), (4.32)

where x−1 < ξ < x4.

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)–(4.28)
and (4.29)–(4.32) when approximating∫ π/4

0
sin x dx = 1−√2/2 ≈ 0.29289322.

Solution For the closed formulas we have

n = 1 :
(π/4)

2

[
sin 0+ sin

π

4

]
≈ 0.27768018

n = 2 :
(π/8)

3

[
sin 0+ 4 sin

π

8
+ sin

π

4

]
≈ 0.29293264

n = 3 :
3(π/12)

8

[
sin 0+ 3 sin

π

12
+ 3 sin

π

6
+ sin

π

4

]
≈ 0.29291070

n = 4 :
2(π/16)

45

[
7 sin 0+ 32 sin

π

16
+ 12 sin

π

8
+ 32 sin

3π

16
+ 7 sin

π

4

]
≈ 0.29289318

and for the open formulas we have

n = 0 : 2(π/8)
[
sin

π

8

]
≈ 0.30055887

n = 1 :
3(π/12)

2

[
sin

π

12
+ sin

π

6

]
≈ 0.29798754

n = 2 :
4(π/16)

3

[
2 sin

π

16
− sin

π

8
+ 2 sin

3π

16

]
≈ 0.29285866

n = 3 :
5(π/20)

24

[
11 sin

π

20
+ sin

π

10
+ sin

3π

20
+ 11 sin

π

5

]
≈ 0.29286923

Table 4.8 summarizes these results and shows the approximation errors.

Table 4.8 n 0 1 2 3 4

Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318
Error 0.01521303 0.00003942 0.00001748 0.00000004
Open formulas 0.30055887 0.29798754 0.29285866 0.29286923
Error 0.00766565 0.00509432 0.00003456 0.00002399
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E X E R C I S E S E T 4.3

1. Approximate the following integrals using the Trapezoidal rule.

a.
∫ 1

0.5
x4 dx b.

∫ 0.5

0

2

x − 4
dx

c.
∫ 1.5

1
x2 ln x dx d.

∫ 1

0
x2e−x dx

e.
∫ 1.6

1

2x

x2 − 4
dx f.

∫ 0.35

0

2

x2 − 4
dx

g.
∫ π/4

0
x sin x dx h.

∫ π/4

0
e3x sin 2x dx

2. Approximate the following integrals using the Trapezoidal rule.

a.
∫ 0.25

−0.25
(cos x)2 dx b.

∫ 0

−0.5
x ln(x + 1) dx

c.
∫ 1.3

0.75

(
(sin x)2 − 2x sin x + 1

)
dx d.

∫ e+1

e

1

x ln x
dx

3. Find a bound for the error in Exercise 1 using the error formula, and compare this to the actual error.

4. Find a bound for the error in Exercise 2 using the error formula, and compare this to the actual error.

5. Repeat Exercise 1 using Simpson’s rule.

6. Repeat Exercise 2 using Simpson’s rule.

7. Repeat Exercise 3 using Simpson’s rule and the results of Exercise 5.

8. Repeat Exercise 4 using Simpson’s rule and the results of Exercise 6.

9. Repeat Exercise 1 using the Midpoint rule.

10. Repeat Exercise 2 using the Midpoint rule.

11. Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9.

12. Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10.

13. The Trapezoidal rule applied to
∫ 2

0 f (x) dx gives the value 4, and Simpson’s rule gives the value 2.
What is f (1)?

14. The Trapezoidal rule applied to
∫ 2

0 f (x) dx gives the value 5, and the Midpoint rule gives the value 4.
What value does Simpson’s rule give?

15. Find the degree of precision of the quadrature formula∫ 1

−1
f (x) dx = f

(
−
√

3

3

)
+ f

(√
3

3

)
.

16. Let h = (b − a)/3, x0 = a, x1 = a + h, and x2 = b. Find the degree of precision of the quadrature
formula ∫ b

a
f (x) dx = 9

4
hf (x1)+ 3

4
hf (x2).

17. The quadrature formula
∫ 1
−1 f (x) dx = c0f (−1) + c1f (0) + c2f (1) is exact for all polynomials of

degree less than or equal to 2. Determine c0, c1, and c2.

18. The quadrature formula
∫ 2

0 f (x) dx = c0f (0) + c1f (1) + c2f (2) is exact for all polynomials of
degree less than or equal to 2. Determine c0, c1, and c2.

19. Find the constants c0, c1, and x1 so that the quadrature formula∫ 1

0
f (x) dx = c0f (0)+ c1f (x1)

has the highest possible degree of precision.

20. Find the constants x0, x1, and c1 so that the quadrature formula∫ 1

0
f (x) dx = 1

2
f (x0)+ c1f (x1)

has the highest possible degree of precision.
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4.4 Composite Numerical Integration 203

21. Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of
the approximations consistent with the error formulas? Which of parts (d) and (e) give the better
approximation?

a.
∫ 0.1

0

√
1+ x dx b.

∫ π/2

0
(sin x)2 dx

c.
∫ 1.5

1.1
ex dx d.

∫ 10

1

1

x
dx

e.
∫ 5.5

1

1

x
dx +

∫ 10

5.5

1

x
dx f.

∫ 1

0
x1/3 dx

22. Given the function f at the following values,

x 1.8 2.0 2.2 2.4 2.6

f (x) 3.12014 4.42569 6.04241 8.03014 10.46675

approximate
∫ 2.6

1.8 f (x) dx using all the appropriate quadrature formulas of this section.

23. Suppose that the data of Exercise 22 have round-off errors given by the following table.

x 1.8 2.0 2.2 2.4 2.6

Error in f (x) 2× 10−6 −2× 10−6 −0.9× 10−6 −0.9× 10−6 2× 10−6

Calculate the errors due to round-off in Exercise 22.

24. Derive Simpson’s rule with error term by using∫ x2

x0

f (x) dx = a0f (x0)+ a1f (x1)+ a2f (x2)+ kf (4)(ξ).

Find a0, a1, and a2 from the fact that Simpson’s rule is exact for f (x) = xn when n = 1, 2, and 3.
Then find k by applying the integration formula with f (x) = x4.

25. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of
precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degree k = 0, 1, . . . , n,
but E(P(x)) �= 0 for some polynomial P(x) of degree n+ 1.

26. Derive Simpson’s three-eighths rule (the closed rule with n = 3) with error term by using
Theorem 4.2.

27. Derive the open rule with n = 1 with error term by using Theorem 4.3.

4.4 Composite Numerical Integration

The Newton-Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equally-spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials.

In this section, we discuss a piecewise approach to numerical integration that uses the
low-order Newton-Cotes formulas. These are the techniques most often applied.

Piecewise approximation is often
effective. Recall that this was
used for spline interpolation.

Example 1 Use Simpson’s rule to approximate
∫ 4

0 ex dx and compare this to the results obtained

by adding the Simpson’s rule approximations for
∫ 2

0 ex dx and
∫ 4

2 ex dx. Compare these

approximations to the sum of Simpson’s rule for
∫ 1

0 ex dx,
∫ 2

1 ex dx,
∫ 3

2 ex dx, and
∫ 4

3 ex dx.
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Solution Simpson’s rule on [0, 4] uses h = 2 and gives∫ 4

0
ex dx ≈ 2

3
(e0 + 4e2 + e4) = 56.76958.

The exact answer in this case is e4 − e0 = 53.59815, and the error −3.17143 is far larger
than we would normally accept.

Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] uses h = 1 and gives∫ 4

0
ex dx =

∫ 2

0
ex dx +

∫ 4

2
ex dx

≈ 1

3

(
e0 + 4e+ e2

)+ 1

3

(
e2 + 4e3 + e4

)
= 1

3

(
e0 + 4e+ 2e2 + 4e3 + e4

)
= 53.86385.

The error has been reduced to −0.26570.
For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4]we use Simpson’s rule four times with

h = 1
2 giving∫ 4

0
ex dx =

∫ 1

0
ex dx +

∫ 2

1
ex dx +

∫ 3

2
ex dx +

∫ 4

3
ex dx

≈ 1

6

(
e0 + 4e1/2 + e

)+ 1

6

(
e+ 4e3/2 + e2

)
+ 1

6

(
e2 + 4e5/2 + e3

)+ 1

6

(
e3 + 4e7/2 + e4

)
= 1

6

(
e0 + 4e1/2 + 2e+ 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4

)
= 53.61622.

The error for this approximation has been reduced to −0.01807.

To generalize this procedure for an arbitrary integral
∫ b

a
f (x) dx, choose an even

integer n. Subdivide the interval [a, b] into n subintervals, and apply Simpson’s rule on
each consecutive pair of subintervals. (See Figure 4.7.)

Figure 4.7
y

xa � x0 x2 b � xn

y � f (x)

x2j�2 x2j�1 x2j
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With h = (b− a)/n and xj = a+ jh, for each j = 0, 1, . . . , n, we have

∫ b

a
f (x) dx =

n/2∑
j=1

∫ x2 j

x2 j−2

f (x) dx

=
n/2∑
j=1

{
h

3
[f (x2 j−2)+ 4f (x2 j−1)+ f (x2 j)] − h5

90
f (4)(ξj)

}
,

for some ξj with x2 j−2 < ξj < x2 j, provided that f ∈ C4[a, b]. Using the fact that for each
j = 1, 2, . . . , (n/2)− 1 we have f (x2 j) appearing in the term corresponding to the interval
[x2 j−2, x2 j] and also in the term corresponding to the interval [x2 j, x2 j+2], we can reduce
this sum to

∫ b

a
f (x) dx = h

3

⎡
⎣f (x0)+ 2

(n/2)−1∑
j=1

f (x2 j)+ 4
n/2∑
j=1

f (x2 j−1)+ f (xn)

⎤
⎦− h5

90

n/2∑
j=1

f (4)(ξj).

The error associated with this approximation is

E(f ) = − h5

90

n/2∑
j=1

f (4)(ξj),

where x2 j−2 < ξj < x2 j, for each j = 1, 2, . . . , n/2.
If f ∈ C4[a, b], the Extreme Value Theorem 1.9 implies that f (4) assumes its maximum

and minimum in [a, b]. Since

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

we have

n

2
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤ n

2
max

x∈[a,b]
f (4)(x)

and

min
x∈[a,b]

f (4)(x) ≤ 2

n

n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x).

By the Intermediate Value Theorem 1.11, there is a μ ∈ (a, b) such that

f (4)(μ) = 2

n

n/2∑
j=1

f (4)(ξj).

Thus

E(f ) = − h5

90

n/2∑
j=1

f (4)(ξj) = − h5

180
nf (4)(μ),

or, since h = (b− a)/n,

E(f ) = − (b− a)

180
h4f (4)(μ).

These observations produce the following result.
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Theorem 4.4 Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n.
There exists a μ ∈ (a, b) for which the Composite Simpson’s rule for n subintervals can
be written with its error term as∫ b

a
f (x) dx = h

3

⎡
⎣f (a)+ 2

(n/2)−1∑
j=1

f (x2 j)+ 4
n/2∑
j=1

f (x2 j−1)+ f (b)
⎤
⎦− b− a

180
h4f (4)(μ).

Notice that the error term for the Composite Simpson’s rule is O(h4), whereas it was
O(h5) for the standard Simpson’s rule. However, these rates are not comparable because for
standard Simpson’s rule we have h fixed at h = (b − a)/2, but for Composite Simpson’s
rule we have h = (b − a)/n, for n an even integer. This permits us to considerably reduce
the value of h when the Composite Simpson’s rule is used.

Algorithm 4.1 uses the Composite Simpson’s rule on n subintervals. This is the most
frequently used general-purpose quadrature algorithm.

ALGORITHM

4.1
Composite Simpson’s Rule

To approximate the integral I = ∫ b
a f (x) dx:

INPUT endpoints a, b; even positive integer n.

OUTPUT approximation XI to I .

Step 1 Set h = (b− a)/n.

Step 2 Set XI0 = f (a)+ f (b);
XI1 = 0; (Summation of f (x2i−1).)
XI2 = 0. (Summation of f (x2i).)

Step 3 For i = 1, . . . , n− 1 do Steps 4 and 5.

Step 4 Set X = a+ ih.

Step 5 If i is even then set XI2 = XI2+ f (X)
else set XI1 = XI1+ f (X).

Step 6 Set XI = h(XI0+ 2 · XI2+ 4 · XI1)/3.

Step 7 OUTPUT (XI);
STOP.

The subdivision approach can be applied to any of the Newton-Cotes formulas. The
extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof.
The Trapezoidal rule requires only one interval for each application, so the integer n can be
either odd or even.

Theorem 4.5 Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n. There exists
a μ ∈ (a, b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦− b− a

12
h2f ′′(μ).
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Figure 4.8
y

xa � x0 b � xn

y � f (x)

xj�1 xjx1 xn�1

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.)

Figure 4.9

x

y

a � x�1 x0 x1 xnx2j�1 xn�1x2j x2j�1 b � xn�1

y � f (x)

Theorem 4.6 Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)h for each
j = −1, 0, . . . , n + 1. There exists a μ ∈ (a, b) for which the Composite Midpoint rule
for n+ 2 subintervals can be written with its error term as

∫ b

a
f (x) dx = 2h

n/2∑
j=0

f (x2 j)+ b− a

6
h2f ′′(μ).

Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when
approximating

∫ π
0 sin x dx and employing

(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (a) The error form for the Composite Trapezoidal rule for f (x) = sin x on [0,π ]
is ∣∣∣∣πh2

12
f ′′(μ)

∣∣∣∣ =
∣∣∣∣πh2

12
(− sinμ)

∣∣∣∣ = πh2

12
| sinμ|.
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208 C H A P T E R 4 Numerical Differentiation and Integration

To ensure sufficient accuracy with this technique we need to have

πh2

12
| sinμ| ≤ πh2

12
< 0.00002.

Since h = π/n implies that n = π/h, we need

π3

12n2
< 0.00002 which implies that n >

(
π3

12(0.00002)

)1/2

≈ 359.44.

and the Composite Trapezoidal rule requires n ≥ 360.

(b) The error form for the Composite Simpson’s rule for f (x) = sin x on [0,π ] is∣∣∣∣πh4

180
f (4)(μ)

∣∣∣∣ =
∣∣∣∣πh4

180
sinμ

∣∣∣∣ = πh4

180
| sinμ|.

To ensure sufficient accuracy with this technique we need to have

πh4

180
| sinμ| ≤ πh4

180
< 0.00002.

Using again the fact that n = π/h gives

π5

180n4
< 0.00002 which implies that n >

(
π5

180(0.00002)

)1/4

≈ 17.07.

So Composite Simpson’s rule requires only n ≥ 18.
Composite Simpson’s rule with n = 18 gives

∫ π

0
sin x dx ≈ π

54

⎡
⎣2

8∑
j=1

sin

(
jπ

9

)
+ 4

9∑
j=1

sin

(
(2 j − 1)π

18

)⎤⎦ = 2.0000104.

This is accurate to within about 10−5 because the true value is− cos(π)− (− cos(0)) = 2.

Composite Simpson’s rule is the clear choice if you wish to minimize computation.
For comparison purposes, consider the Composite Trapezoidal rule using h = π/18 for the
integral in Example 2. This approximation uses the same function evaluations as Composite
Simpson’s rule but the approximation in this case

∫ π

0
sin x dx ≈ π

36

⎡
⎣2

17∑
j=1

sin

(
jπ

18

)
+ sin 0+ sin π

⎤
⎦= π

36

⎡
⎣2

17∑
j=1

sin

(
jπ

18

)⎤⎦= 1.9949205.

is accurate only to about 5× 10−3.
Maple contains numerous procedures for numerical integration in the NumericalAnal-

ysis subpackage of the Student package. First access the library as usual with

with(Student[NumericalAnalysis])

The command for all methods is Quadrature with the options in the call specifying the
method to be used. We will use the Trapezoidal method to illustrate the procedure. First
define the function and the interval of integration with

f := x→ sin(x); a := 0.0; b := π
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4.4 Composite Numerical Integration 209

After Maple responds with the function and the interval, enter the command

Quadrature(f (x), x = a..b, method = trapezoid, partition = 20, output = value)

1.995885973

The value of the step size h in this instance is the width of the interval b− a divided by the
number specified by partition = 20.

Simpson’s method can be called in a similar manner, except that the step size h is
determined by b − a divided by twice the value of partition. Hence, the Simpson’s rule
approximation using the same nodes as those in the Trapezoidal rule is called with

Quadrature(f (x), x = a..b, method = simpson, partition = 10, output = value)

2.000006785

Any of the Newton-Cotes methods can be called using the option

method = newtoncotes[open, n] or method = newtoncotes[closed, n]
Be careful to correctly specify the number in partition when an even number of divisions
is required, and when an open method is employed.

Round-Off Error Stability

In Example 2 we saw that ensuring an accuracy of 2× 10−5 for approximating
∫ π

0 sin x dx
required 360 subdivisions of [0,π ] for the Composite Trapezoidal rule and only 18 for
Composite Simpson’s rule. In addition to the fact that less computation is needed for the
Simpson’s technique, you might suspect that because of fewer computations this method
would also involve less round-off error. However, an important property shared by all the
composite integration techniques is a stability with respect to round-off error. That is, the
round-off error does not depend on the number of calculations performed.

Numerical integration is expected
to be stable, whereas numerical
differentiation is unstable.

To demonstrate this rather amazing fact, suppose we apply the Composite Simpson’s
rule with n subintervals to a function f on [a, b] and determine the maximum bound for the
round-off error. Assume that f (xi) is approximated by f̃ (xi) and that

f (xi) = f̃ (xi)+ ei, for each i = 0, 1, . . . , n,

where ei denotes the round-off error associated with using f̃ (xi) to approximate f (xi). Then
the accumulated error, e(h), in the Composite Simpson’s rule is

e(h) =
∣∣∣∣∣∣
h

3

⎡
⎣e0 + 2

(n/2)−1∑
j=1

e2 j + 4
n/2∑
j=1

e2 j−1 + en

⎤
⎦
∣∣∣∣∣∣

≤ h

3

⎡
⎣|e0| + 2

(n/2)−1∑
j=1

|e2 j| + 4
n/2∑
j=1

|e2 j−1| + |en|
⎤
⎦ .

If the round-off errors are uniformly bounded by ε, then

e(h) ≤ h

3

[
ε + 2

(n

2
− 1
)
ε + 4

(n

2

)
ε + ε

]
= h

3
3nε = nhε.

But nh = b− a, so

e(h) ≤ (b− a)ε,
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210 C H A P T E R 4 Numerical Differentiation and Integration

a bound independent of h (and n). This means that, even though we may need to divide
an interval into more parts to ensure accuracy, the increased computation that is required
does not increase the round-off error. This result implies that the procedure is stable as h
approaches zero. Recall that this was not true of the numerical differentiation procedures
considered at the beginning of this chapter.

E X E R C I S E S E T 4.4

1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.

a.
∫ 2

1
x ln x dx, n = 4 b.

∫ 2

−2
x3ex dx, n = 4

c.
∫ 2

0

2

x2 + 4
dx, n = 6 d.

∫ π

0
x2 cos x dx, n = 6

e.
∫ 2

0
e2x sin 3x dx, n = 8 f.

∫ 3

1

x

x2 + 4
dx, n = 8

g.
∫ 5

3

1√
x2 − 4

dx, n = 8 h.
∫ 3π/8

0
tan x dx, n = 8

2. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.

a.
∫ 0.5

−0.5
cos2 x dx, n = 4 b.

∫ 0.5

−0.5
x ln(x + 1) dx, n = 6

c.
∫ 1.75

.75
(sin2 x − 2x sin x + 1) dx, n = 8 d.

∫ e+2

e

1

x ln x
dx, n = 8

3. Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.

4. Use the Composite Simpson’s rule to approximate the integrals in Exercise 2.

5. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the integrals in Exercise 1.

6. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the integrals in Exercise 2.

7. Approximate
∫ 2

0 x2 ln(x2 + 1) dx using h = 0.25. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

8. Approximate
∫ 2

0 x2e−x2
dx using h = 0.25. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

9. Suppose that f (0) = 1, f (0.5) = 2.5, f (1) = 2, and f (0.25) = f (0.75) = α. Find α if the
Composite Trapezoidal rule with n = 4 gives the value 1.75 for

∫ 1
0 f (x) dx.

10. The Midpoint rule for approximating
∫ 1
−1 f (x) dx gives the value 12, the Composite Midpoint rule

with n = 2 gives 5, and Composite Simpson’s rule gives 6. Use the fact that f (−1) = f (1) and
f (−0.5) = f (0.5)− 1 to determine f (−1), f (−0.5), f (0), f (0.5), and f (1).

11. Determine the values of n and h required to approximate∫ 2

0
e2x sin 3x dx

to within 10−4. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.
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12. Repeat Exercise 11 for the integral
∫ π

0 x2 cos x dx.

13. Determine the values of n and h required to approximate∫ 2

0

1

x + 4
dx

to within 10−5 and compute the approximation. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

14. Repeat Exercise 13 for the integral
∫ 2

1 x ln x dx.

15. Let f be defined by

f (x) =

⎧⎪⎨
⎪⎩

x3 + 1, 0 ≤ x ≤ 0.1,

1.001+ 0.03(x − 0.1)+ 0.3(x − 0.1)2 + 2(x − 0.1)3, 0.1 ≤ x ≤ 0.2,

1.009+ 0.15(x − 0.2)+ 0.9(x − 0.2)2 + 2(x − 0.2)3, 0.2 ≤ x ≤ 0.3.

a. Investigate the continuity of the derivatives of f .

b. Use the Composite Trapezoidal rule with n = 6 to approximate
∫ 0.3

0 f (x) dx, and estimate the
error using the error bound.

c. Use the Composite Simpson’s rule with n = 6 to approximate
∫ 0.3

0 f (x) dx. Are the results more
accurate than in part (b)?

16. Show that the error E(f ) for Composite Simpson’s rule can be approximated by

− h4

180
[f ′′′(b)− f ′′′(a)].

[Hint:
∑n/2

j=1 f
(4)(ξj)(2h) is a Riemann Sum for

∫ b
a f

(4)(x) dx.]

17. a. Derive an estimate for E(f ) in the Composite Trapezoidal rule using the method in Exercise 16.

b. Repeat part (a) for the Composite Midpoint rule.

18. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 12.

19. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 14.

20. In multivariable calculus and in statistics courses it is shown that∫ ∞
−∞

1

σ
√

2π
e−(1/2)(x/σ)

2
dx = 1,

for any positive σ . The function

f (x) = 1

σ
√

2π
e−(1/2)(x/σ)

2

is the normal density function with mean μ = 0 and standard deviation σ . The probability that a
randomly chosen value described by this distribution lies in [a, b] is given by

∫ b
a f (x) dx. Approximate

to within 10−5 the probability that a randomly chosen value described by this distribution will lie in
a. [−σ , σ ] b. [−2σ , 2σ ] c. [−3σ , 3σ ]

21. Determine to within 10−6 the length of the graph of the ellipse with equation 4x2 + 9y2 = 36.

22. A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined
by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the
following table.

Time 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84

Speed 124 134 148 156 147 133 121 109 99 85 78 89 104 116 123

How long is the track?
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212 C H A P T E R 4 Numerical Differentiation and Integration

23. A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a function
of the velocity v. The relationship between the resistance R, velocity v, and time t is given by the
equation

t =
∫ v(t)

v(t0)

m

R(u)
du.

Suppose that R(v) = −v√v for a particular fluid, where R is in newtons and v is in meters/second. If
m = 10 kg and v(0) = 10 m/s, approximate the time required for the particle to slow to v = 5 m/s.

24. To simulate the thermal characteristics of disk brakes (see the following figure), D. A. Secrist and
R. W. Hornbeck [SH] needed to approximate numerically the “area averaged lining temperature,” T ,
of the brake pad from the equation

T =

∫ r0

re

T(r)rθp dr∫ r0

re

rθp dr
,

where re represents the radius at which the pad-disk contact begins, r0 represents the outside radius
of the pad-disk contact, θp represents the angle subtended by the sector brake pads, and T(r) is the
temperature at each point of the pad, obtained numerically from analyzing the heat equation (see
Section 12.2). Suppose re = 0.308 ft, r0 = 0.478 ft, θp = 0.7051 radians, and the temperatures given
in the following table have been calculated at the various points on the disk. Approximate T .

r (ft) T(r) (◦F) r (ft) T(r) (◦F) r (ft) T(r) (◦F)

0.308 640 0.376 1034 0.444 1204
0.325 794 0.393 1064 0.461 1222
0.342 885 0.410 1114 0.478 1239
0.359 943 0.427 1152

Brake disk

Brake
pad

ro
re

θp

25. Find an approximation to within 10−4 of the value of the integral considered in the application opening
this chapter: ∫ 48

0

√
1+ (cos x)2 dx.

26. The equation ∫ x

0

1√
2π

e−t2/2 dt = 0.45
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can be solved for x by using Newton’s method with

f (x) =
∫ x

0

1√
2π

e−t2/2 dt − 0.45

and

f ′(x) = 1√
2π

e−x2/2.

To evaluate f at the approximation pk , we need a quadrature formula to approximate∫ pk

0

1√
2π

e−t2/2 dt.

a. Find a solution to f (x) = 0 accurate to within 10−5 using Newton’s method with p0 = 0.5 and
the Composite Simpson’s rule.

b. Repeat (a) using the Composite Trapezoidal rule in place of the Composite Simpson’s rule.

4.5 Romberg Integration

In this section we will illustrate how Richardson extrapolation applied to results from the
Composite Trapezoidal rule can be used to obtain high accuracy approximations with little
computational cost.

In Section 4.4 we found that the Composite Trapezoidal rule has a truncation error of
order O(h2). Specifically, we showed that for h = (b− a)/n and xj = a+ jh we have

∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦− (b− a)f ′′(μ)

12
h2.

for some number μ in (a, b).
By an alternative method it can be shown (see [RR], pp. 136–140), that if f ∈ C∞[a, b],

the Composite Trapezoidal rule can also be written with an error term in the form

∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦+ K1h2 + K2h4 + K3h6 + · · · , (4.33)

where each Ki is a constant that depends only on f (2i−1)(a) and f (2i−1)(b).
Recall from Section 4.2 that Richardson extrapolation can be performed on any

approximation procedure whose truncation error is of the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. In that section we
gave demonstrations to illustrate how effective this techniques is when the approximation
procedure has a truncation error with only even powers of h, that is, when the truncation
error has the form.

m−1∑
j=1

Kjh
2 j + O(h2m).
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Because the Composite Trapezoidal rule has this form, it is an obvious candidate for
extrapolation. This results in a technique known as Romberg integration.

Werner Romberg (1909–2003)
devised this procedure for
improving the accuracy of the
Trapezoidal rule by eliminating
the successive terms in the
asymptotic expansion in 1955.

To approximate the integral
∫ b

a f (x) dx we use the results of the Composite Trapezoidal
rule with n = 1, 2, 4, 8, 16, . . . , and denote the resulting approximations, respectively, by
R1,1, R2,1, R3,1, etc. We then apply extrapolation in the manner given in Section 4.2, that is,
we obtain O(h4) approximations R2,2, R3,2, R4,2, etc., by

Rk,2 = Rk,1 + 1

3
(Rk,1 − Rk−1,1), for k = 2, 3, . . .

Then O(h6) approximations R3,3, R4,3, R5,3, etc., by

Rk,3 = Rk,2 + 1

15
(Rk,2 − Rk−1,2), for k = 3, 4, . . . .

In general, after the appropriate Rk, j−1 approximations have been obtained, we determine
the O(h2 j) approximations from

Rk, j = Rk, j−1 + 1

4 j−1 − 1
(Rk, j−1 − Rk−1, j−1), for k = j, j + 1, . . .

Example 1 Use the Composite Trapezoidal rule to find approximations to
∫ π

0 sin x dx with n = 1, 2, 4,
8, and 16. Then perform Romberg extrapolation on the results.

The Composite Trapezoidal rule for the various values of n gives the following approx-
imations to the true value 2.

R1,1 = π
2
[sin 0+ sin π ] = 0;

R2,1 = π
4

[
sin 0+ 2 sin

π

2
+ sin π

]
= 1.57079633;

R3,1 = π
8

[
sin 0+ 2

(
sin

π

4
+ sin

π

2
+ sin

3π

4

)
+ sin π

]
= 1.89611890;

R4,1 = π

16

[
sin 0+ 2

(
sin

π

8
+ sin

π

4
+ · · · + sin

3π

4
+ sin

7π

8

)
+ sin π

]
= 1.97423160;

R5,1 = π

32

[
sin 0+ 2

(
sin

π

16
+ sin

π

8
+ · · · + sin

7π

8
+ sin

15π

16

)
+ sin π

]
= 1.99357034.

The O(h4) approximations are

R2,2 =R2,1 + 1

3
(R2,1 − R1,1) = 2.09439511; R3,2 =R3,1 + 1

3
(R3,1 − R2,1) = 2.00455976;

R4,2 =R4,1 + 1

3
(R4,1 − R3,1) = 2.00026917; R5,2 =R5,1 + 1

3
(R5,1 − R4,1) = 2.00001659;

The O(h6) approximations are

R3,3 = R3,2 + 1

15
(R3,2 − R2,2) = 1.99857073; R4,3 = R4,2 + 1

15
(R4,2 − R3,2) = 1.99998313;

R5,3 = R5,2 + 1

15
(R5,2 − R4,2) = 1.99999975.

The two O(h8) approximations are

R4,4 = R4,3+ 1

63
(R4,3−R3,3) = 2.00000555; R5,4 = R5,3+ 1

63
(R5,3−R4,3) = 2.00000001,
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4.5 Romberg Integration 215

and the final O(h10) approximation is

R5,5 = R5,4 + 1

255
(R5,4 − R4,4) = 1.99999999.

These results are shown in Table 4.9.

Table 4.9 0
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999

Notice that when generating the approximations for the Composite Trapezoidal rule
approximations in Example 1, each consecutive approximation included all the functions
evaluations from the previous approximation. That is, R1,1 used evaluations at 0 and π , R2,1

used these evaluations and added an evaluation at the intermediate point π/2. Then R3,1

used the evaluations of R2,1 and added two additional intermediate ones at π/4 and 3π/4.
This pattern continues with R4,1 using the same evaluations as R3,1 but adding evaluations
at the 4 intermediate points π/8, 3π/8, 5π/8, and 7π/8, and so on.

This evaluation procedure for Composite Trapezoidal rule approximations holds for an
integral on any interval [a, b]. In general, the Composite Trapezoidal rule denoted Rk+1,1

uses the same evaluations as Rk,1 but adds evaluations at the 2k−2 intermediate points.
Efficient calculation of these approximations can therefore be done in a recursive manner.

To obtain the Composite Trapezoidal rule approximations for
∫ b

a f (x) dx, let hk =
(b− a)/mk = (b− a)/2k−1. Then

R1,1 = h1

2
[f (a)+ f (b)] = (b− a)

2
[f (a)+ f (b)];

and

R2,1 = h2

2
[f (a)+ f (b)+ 2f (a+ h2)].

By reexpressing this result for R2,1 we can incorporate the previously determined approxi-
mation R1,1

R2,1 = (b− a)

4

[
f (a)+ f (b)+ 2f

(
a+ (b− a)

2

)]
= 1

2
[R1,1 + h1f (a+ h2)].

In a similar manner we can write

R3,1 = 1

2
{R2,1 + h2[f (a+ h3)+ f (a+ 3h3)]};

and, in general (see Figure 4.10 on page 216), we have

Rk,1 = 1

2

⎡
⎣Rk−1,1 + hk−1

2k−2∑
i=1

f (a+ (2i − 1)hk)

⎤
⎦ , (4.34)

for each k = 2, 3, . . . , n. (See Exercises 14 and 15.)
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Figure 4.10

y

x

yy

y � f (x)R1,1 R2,1

a b a b a bx x

R3,1
y � f (x) y � f (x)

Extrapolation then is used to produce O(h2 j
k ) approximations by

Rk, j = Rk, j−1 + 1

4 j−1 − 1
(Rk, j−1 − Rk−1, j−1), for k = j, j + 1, . . .

as shown in Table 4.10.

Table 4.10 k O
(
h2

k

)
O
(
h4

k

)
O
(
h6

k

)
O
(
h8

k

)
O
(
h2n

k

)
1 R1,1

2 R2,1 R2,2

3 R3,1 R3,2 R3,3

4 R4,1 R4,2 R4,3 R4,4

...
...

...
...

...
. . .

n Rn,1 Rn,2 Rn,3 Rn,4 · · · Rn,n

The effective method to construct the Romberg table makes use of the highest order
of approximation at each step. That is, it calculates the entries row by row, in the order
R1,1, R2,1, R2,2, R3,1, R3,2, R3,3, etc. This also permits an entire new row in the table to be
calculated by doing only one additional application of the Composite Trapezoidal rule. It
then uses a simple averaging on the previously calculated values to obtain the remaining
entries in the row. Remember

• Calculate the Romberg table one complete row at a time.

Example 2 Add an additional extrapolation row to Table 4.10 to approximate
∫ π

0 sin x dx.

Solution To obtain the additional row we need the trapezoidal approximation

R6,1 = 1

2

⎡
⎣R5,1 + π

16

24∑
k=1

sin
(2k − 1)π

32

⎤
⎦ = 1.99839336.
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The values in Table 4.10 give

R6,2 = R6,1 + 1

3
(R6,1 − R5,1) = 1.99839336+ 1

3
(1.99839336− 1.99357035)

= 2.00000103;

R6,3 = R6,2 + 1

15
(R6,2 − R5,2) = 2.00000103+ 1

15
(2.00000103− 2.00001659)

= 2.00000000;

R6,4 = R6,3 + 1

63
(R6,3 − R5,3) = 2.00000000;

R6,5 = R6,4 + 1

255
(R6,4 − R5,4) = 2.00000000;

and R6,6 = R6,5 + 1
1023 (R6,5 − R5,5) = 2.00000000. The new extrapolation table is shown

in Table 4.11.

Table 4.11 0
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999
1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000

Notice that all the extrapolated values except for the first (in the first row of the second
column) are more accurate than the best composite trapezoidal approximation (in the last row
of the first column). Although there are 21 entries in Table 4.11, only the six in the left column
require function evaluations since these are the only entries generated by the Composite
Trapezoidal rule; the other entries are obtained by an averaging process. In fact, because
of the recurrence relationship of the terms in the left column, the only function evaluations
needed are those to compute the final Composite Trapezoidal rule approximation. In general,
Rk,1 requires 1+ 2k−1 function evaluations, so in this case 1+ 25 = 33 are needed.

Algorithm 4.2 uses the recursive procedure to find the initial Composite Trapezoidal
Rule approximations and computes the results in the table row by row.

ALGORITHM

4.2
Romberg

To approximate the integral I = ∫ b
a f (x) dx, select an integer n > 0.

INPUT endpoints a, b; integer n.

OUTPUT an array R. (Compute R by rows; only the last 2 rows are saved in storage.)

Step 1 Set h = b− a;
R1,1 = h

2 (f (a)+ f (b)).
Step 2 OUTPUT (R1,1).

Step 3 For i = 2, . . . , n do Steps 4–8.
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Step 4 Set R2,1 = 1

2

⎡
⎣R1,1 + h

2i−2∑
k=1

f (a+ (k − 0.5)h)

⎤
⎦.

(Approximation from Trapezoidal method.)

Step 5 For j = 2, . . . , i

set R2, j = R2, j−1 + R2, j−1 − R1, j−1

4 j−1 − 1
. (Extrapolation.)

Step 6 OUTPUT (R2,j for j = 1, 2, . . . , i).

Step 7 Set h = h/2.

Step 8 For j = 1, 2, . . . , i set R1,j = R2,j. (Update row 1 of R.)

Step 9 STOP.

Algorithm 4.2 requires a preset integer n to determine the number of rows to be gen-
erated. We could also set an error tolerance for the approximation and generate n, within
some upper bound, until consecutive diagonal entries Rn−1,n−1 and Rn,n agree to within
the tolerance. To guard against the possibility that two consecutive row elements agree
with each other but not with the value of the integral being approximated, it is common to
generate approximations until not only |Rn−1,n−1 − Rn,n| is within the tolerance, but also
|Rn−2,n−2 − Rn−1,n−1|. Although not a universal safeguard, this will ensure that two differ-
ently generated sets of approximations agree within the specified tolerance before Rn,n, is
accepted as sufficiently accurate.

Romberg integration can be performed with the Quadrature command in the Numeri-
calAnalysis subpackage of Maple’s Student package. For example, after loading the package
and defining the function and interval, the command

Quadrature(f (x), x = a..b, method = romberg6, output = information)

produces the values shown in Table 4.11 together with the information that 6 applications
of the Trapezoidal rule were used and 33 function evaluations were required.

Romberg integration applied to a function f on the interval [a, b] relies on the assump-
tion that the Composite Trapezoidal rule has an error term that can be expressed in the
form of Eq. (4.33); that is, we must have f ∈ C2k+2[a, b] for the kth row to be generated.
General-purpose algorithms using Romberg integration include a check at each stage to
ensure that this assumption is fulfilled. These methods are known as cautious Romberg
algorithms and are described in [Joh]. This reference also describes methods for using the
Romberg technique as an adaptive procedure, similar to the adaptive Simpson’s rule that
will be discussed in Section 4.6.

The adjective cautious used in
the description of a numerical
method indicates that a check is
incorporated to determine if the
continuity hypotheses are likely
to be true.

E X E R C I S E S E T 4.5

1. Use Romberg integration to compute R3,3 for the following integrals.

a.
∫ 1.5

1
x2 ln x dx b.

∫ 1

0
x2e−x dx

c.
∫ 0.35

0

2

x2 − 4
dx d.

∫ π/4

0
x2 sin x dx
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e.
∫ π/4

0
e3x sin 2x dx f.

∫ 1.6

1

2x

x2 − 4
dx

g.
∫ 3.5

3

x√
x2 − 4

dx h.
∫ π/4

0
(cos x)2 dx

2. Use Romberg integration to compute R3,3 for the following integrals.

a.
∫ 1

−1
(cos x)2 dx b.

∫ 0.75

−0.75
x ln(x + 1) dx

c.
∫ 4

1

(
(sin x)2 − 2x sin x + 1

)
dx d.

∫ 2e

e

1

x ln x
dx

3. Calculate R4,4 for the integrals in Exercise 1.

4. Calculate R4,4 for the integrals in Exercise 2.

5. Use Romberg integration to approximate the integrals in Exercise 1 to within 10−6. Compute the
Romberg table until either |Rn−1,n−1 − Rn,n| < 10−6, or n = 10. Compare your results to the exact
values of the integrals.

6. Use Romberg integration to approximate the integrals in Exercise 2 to within 10−6. Compute the
Romberg table until either |Rn−1,n−1 − Rn,n| < 10−6, or n = 10. Compare your results to the exact
values of the integrals.

7. Use the following data to approximate
∫ 5

1 f (x) dx as accurately as possible.

x 1 2 3 4 5

f (x) 2.4142 2.6734 2.8974 3.0976 3.2804

8. Romberg integration is used to approximate

∫ 1

0

x2

1+ x3
dx.

If R11 = 0.250 and R22 = 0.2315, what is R21?

9. Romberg integration is used to approximate

∫ 3

2
f (x) dx.

If f (2) = 0.51342, f (3) = 0.36788, R31 = 0.43687, and R33 = 0.43662, find f (2.5).

10. Romberg integration for approximating
∫ 1

0 f (x) dx gives R11 = 4 and R22 = 5. Find f (1/2).

11. Romberg integration for approximating
∫ b

a f (x) dx gives R11 = 8, R22 = 16/3, and R33 = 208/45.
Find R31.

12. Use Romberg integration to compute the following approximations to

∫ 48

0

√
1+ (cos x)2 dx.

[Note: The results in this exercise are most interesting if you are using a device with between seven-
and nine-digit arithmetic.]

a. Determine R1,1, R2,1, R3,1, R4,1, and R5,1, and use these approximations to predict the value of the
integral.

b. Determine R2,2, R3,3, R4,4, and R5,5, and modify your prediction.

c. Determine R6,1, R6,2, R6,3, R6,4, R6,5, and R6,6, and modify your prediction.

d. Determine R7,7, R8,8, R9,9, and R10,10, and make a final prediction.

e. Explain why this integral causes difficulty with Romberg integration and how it can be reformu-
lated to more easily determine an accurate approximation.

13. Show that the approximation obtained from Rk,2 is the same as that given by the Composite Simpson’s
rule described in Theorem 4.4 with h = hk .
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14. Show that, for any k,

2k−1−1∑
i=1

f

(
a+ i

2
hk−1

)
=

2k−2∑
i=1

f

(
a+

(
i − 1

2

)
hk−1

)
+

2k−2−1∑
i=1

f (a+ ihk−1).

15. Use the result of Exercise 14 to verify Eq. (4.34); that is, show that for all k,

Rk,1 = 1

2

⎡
⎣Rk−1,1 + hk−1

2k−2∑
i=1

f

(
a+

(
i − 1

2

)
hk−1

)⎤⎦ .

16. In Exercise 26 of Section 1.1, a Maclaurin series was integrated to approximate erf(1), where erf(x)
is the normal distribution error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

Approximate erf(1) to within 10−7.

4.6 Adaptive Quadrature Methods

The composite formulas are very effective in most situations, but they suffer occasionally
because they require the use of equally-spaced nodes. This is inappropriate when integrating
a function on an interval that contains both regions with large functional variation and regions
with small functional variation.

Illustration The unique solution to the differential equation y′′ +6y′ +25 = 0 that additionally satisfies
y(0) = 0 and y′(0) = 4 is y(x) = e−3x sin 4x. Functions of this type are common in
mechanical engineering because they describe certain features of spring and shock absorber
systems, and in electrical engineering because they are common solutions to elementary
circuit problems. The graph of y(x) for x in the interval [0, 4] is shown in Figure 4.11.

Figure 4.11
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4.6 Adaptive Quadrature Methods 221

Suppose that we need the integral of y(x) on [0, 4]. The graph indicates that the integral on
[3, 4]must be very close to 0, and on [2, 3]would also not be expected to be large. However,
on [0, 2] there is significant variation of the function and it is not at all clear what the integral
is on this interval. This is an example of a situation where composite integration would be
inappropriate. A very low order method could be used on [2, 4], but a higher-order method
would be necessary on [0, 2]. �

The question we will consider in this section is:

• How can we determine what technique should be applied on various portions of the
interval of integration, and how accurate can we expect the final approximation to be?

We will see that under quite reasonable conditions we can answer this question and also
determine approximations that satisfy given accuracy requirements.

If the approximation error for an integral on a given interval is to be evenly distributed,
a smaller step size is needed for the large-variation regions than for those with less variation.
An efficient technique for this type of problem should predict the amount of functional vari-
ation and adapt the step size as necessary. These methods are called Adaptive quadrature
methods. Adaptive methods are particularly popular for inclusion in professional software
packages because, in addition to being efficient, they generally provide approximations that
are within a given specified tolerance.

In this section we consider an Adaptive quadrature method and see how it can be used to
reduce approximation error and also to predict an error estimate for the approximation that
does not rely on knowledge of higher derivatives of the function. The method we discuss
is based on the Composite Simpson’s rule, but the technique is easily modified to use other
composite procedures.

Suppose that we want to approximate
∫ b

a f (x) dx to within a specified tolerance ε > 0.
The first step is to apply Simpson’s rule with step size h = (b − a)/2. This produces (see
Figure 4.12)

∫ b

a
f (x) dx = S(a, b)− h5

90
f (4)(ξ), for some ξ in (a, b), (4.35)

where we denote the Simpson’s rule approximation on [a, b] by

S(a, b) = h

3
[f (a)+ 4f (a+ h)+ f (b)].

Figure 4.12

x

y

y � f (x)

a b
hh

 S(a, b)
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The next step is to determine an accuracy approximation that does not require f (4)(ξ).
To do this, we apply the Composite Simpson’s rule with n = 4 and step size (b−a)/4 = h/2,
giving∫ b

a
f (x) dx = h

6

[
f (a)+ 4f

(
a+ h

2

)
+ 2f (a+ h)+ 4f

(
a+ 3h

2

)
+ f (b)

]

−
(

h

2

)4
(b− a)

180
f (4)(ξ̃ ), (4.36)

for some ξ̃ in (a, b). To simplify notation, let

S

(
a,

a+ b

2

)
= h

6

[
f (a)+ 4f

(
a+ h

2

)
+ f (a+ h)

]

and

S

(
a+ b

2
, b

)
= h

6

[
f (a+ h)+ 4f

(
a+ 3h

2

)
+ f (b)

]
.

Then Eq. (4.36) can be rewritten (see Figure 4.13) as∫ b

a
f (x) dx = S

(
a,

a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ̃ ). (4.37)

Figure 4.13

x

y

y � f (x)

a b

2 
h

2
a � b

2
a � b

S ( (, b
2

a � b
S ( (,a �

The error estimation is derived by assuming that ξ ≈ ξ̃ or, more precisely, thatf (4)(ξ) ≈
f (4)(ξ̃ ), and the success of the technique depends on the accuracy of this assumption. If it
is accurate, then equating the integrals in Eqs. (4.35) and (4.37) gives

S

(
a,

a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ) ≈ S(a, b)− h5

90
f (4)(ξ),

so

h5

90
f (4)(ξ) ≈ 16

15

[
S(a, b)− S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)]
.
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Using this estimate in Eq. (4.37) produces the error estimation

∣∣∣∣
∫ b

a
f (x) dx − S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ ≈ 1

16

(
h5

90

)
f (4)(ξ)

≈ 1

15

∣∣∣∣S(a, b)− S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ .
This implies that S(a, (a+b)/2)+S((a+b)/2, b) approximates

∫ b
a f (x) dx about 15 times

better than it agrees with the computed value S(a, b). Thus, if∣∣∣∣S(a, b)− S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ < 15ε, (4.38)

we expect to have ∣∣∣∣
∫ b

a
f (x) dx − S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ < ε, (4.39)

and

S

(
a,

a+ b

2

)
+ S

(
a+ b

2
, b

)

is assumed to be a sufficiently accurate approximation to
∫ b

a f (x) dx.

Example 1 Check the accuracy of the error estimate given in (4.38) and (4.39) when applied to the
integral ∫ π/2

0
sin x dx = 1.

by comparing

1

15

∣∣∣S (0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣ to

∣∣∣∣
∫ π/2

0
sin x dx − S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣∣ .
Solution We have

S
(

0,
π

2

)
= π/4

3

[
sin 0+ 4 sin

π

4
+ sin

π

2

]
= π

12
(2
√

2+ 1) = 1.002279878

and

S
(

0,
π

4

)
+ S

(π
4

,
π

2

)
= π/8

3

[
sin 0+ 4 sin

π

8
+ 2 sin

π

4
+ 4 sin

3π

8
+ sin

π

2

]

= 1.000134585.

So∣∣∣S (0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣ = |1.002279878− 1.000134585| = 0.002145293.

The estimate for the error obtained when using S(a, (a+b))+S((a+b), b) to approximate∫ b
a f (x) dx is consequently

1

15

∣∣∣S (0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣ = 0.000143020,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



224 C H A P T E R 4 Numerical Differentiation and Integration

which closely approximates the actual error∣∣∣∣
∫ π/2

0
sin x dx − 1.000134585

∣∣∣∣ = 0.000134585,

even though D4
x sin x = sin x varies significantly in the interval (0,π/2).

When the approximations in (4.38) differ by more than 15ε, we can apply the Simpson’s
rule technique individually to the subintervals [a, (a + b)/2] and [(a + b)/2, b]. Then we
use the error estimation procedure to determine if the approximation to the integral on each
subinterval is within a tolerance of ε/2. If so, we sum the approximations to produce an
approximation to

∫ b
a f (x) dx within the tolerance ε.

If the approximation on one of the subintervals fails to be within the tolerance ε/2, then
that subinterval is itself subdivided, and the procedure is reapplied to the two subintervals to
determine if the approximation on each subinterval is accurate to within ε/4. This halving
procedure is continued until each portion is within the required tolerance.

Problems can be constructed for which this tolerance will never be met, but the tech-
nique is usually successful, because each subdivision typically increases the accuracy of
the approximation by a factor of 16 while requiring an increased accuracy factor of only 2.

Algorithm 4.3 details this Adaptive quadrature procedure for Simpson’s rule, although
some technical difficulties arise that require the implementation to differ slightly from the
preceding discussion. For example, in Step 1 the tolerance has been set at 10ε rather than
the 15ε figure in Inequality (4.38). This bound is chosen conservatively to compensate for
error in the assumption f (4)(ξ) ≈ f (4)(ξ̃ ). In problems where f (4) is known to be widely
varying, this bound should be decreased even further.

It is a good idea to include a
margin of safety when it is
impossible to verify accuracy
assumptions.

The procedure listed in the algorithm first approximates the integral on the leftmost
subinterval in a subdivision. This requires the efficient storing and recalling of previously
computed functional evaluations for the nodes in the right half subintervals. Steps 3, 4,
and 5 contain a stacking procedure with an indicator to keep track of the data that will be
required for calculating the approximation on the subinterval immediately adjacent and to
the right of the subinterval on which the approximation is being generated. The method is
easier to implement using a recursive programming language.

ALGORITHM

4.3
Adaptive Quadrature

To approximate the integral I = ∫ b
a f (x) dx to within a given tolerance:

INPUT endpoints a, b; tolerance TOL; limit N to number of levels.

OUTPUT approximation APP or message that N is exceeded.

Step 1 Set APP = 0;
i = 1;
TOLi = 10 TOL;
ai = a;
hi = (b− a)/2;
FAi = f (a);
FCi = f (a+ hi);
FBi = f (b);
Si = hi(FAi + 4FCi + FBi)/3; (Approximation from Simpson’s

method for entire interval.)
Li = 1.
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Step 2 While i > 0 do Steps 3–5.

Step 3 Set FD = f (ai + hi/2);
FE = f (ai + 3hi/2);
S1 = hi(FAi + 4FD+ FCi)/6; (Approximations from Simpson’s

method for halves of subintervals.)
S2 = hi(FCi + 4FE+ FBi)/6;
v1 = ai; (Save data at this level.)
v2 = FAi;
v3 = FCi;
v4 = FBi;
v5 = hi;
v6 = TOLi;
v7 = Si;
v8 = Li.

Step 4 Set i = i − 1. (Delete the level.)
Step 5 If |S1+ S2− v7| < v6

then set APP = APP+ (S1+ S2)
else

if (v8 ≥ N)
then

OUTPUT (‘LEVEL EXCEEDED’); (Procedure fails.)
STOP.

else (Add one level.)
set i = i + 1; (Data for right half subinterval.)

ai = v1 + v5;
FAi = v3;
FCi = FE;
FBi = v4;
hi = v5/2;
TOLi = v6/2;
Si = S2;
Li = v8 + 1;

set i = i + 1; (Data for left half subinterval.)
ai = v1;
FAi = v2;
FCi = FD;
FBi = v3;
hi = hi−1;
TOLi = TOLi−1;
Si = S1;
Li = Li−1.

Step 6 OUTPUT (APP); (APP approximates I to within TOL.)
STOP.

Illustration The graph of the function f (x) = (100/x2) sin(10/x) for x in [1, 3] is shown in Figure
4.14. Using the Adaptive Quadrature Algorithm 4.3 with tolerance 10−4 to approximate∫ 3

1 f (x) dx produces−1.426014, a result that is accurate to within 1.1×10−5. The approxi-
mation required that Simpson’s rule with n = 4 be performed on the 23 subintervals whose
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226 C H A P T E R 4 Numerical Differentiation and Integration

endpoints are shown on the horizontal axis in Figure 4.14. The total number of functional
evaluations required for this approximation is 93.

Figure 4.14
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The largest value of h for which the standard Composite Simpson’s rule gives 10−4 accuracy
is h = 1/88. This application requires 177 function evaluations, nearly twice as many as
Adaptive quadrature. �

Adaptive quadrature can be performed with the Quadrature command in the Numerical-
Analysis subpackage of Maple’s Student package. In this situation the option adaptive =
true is used. For example, to produce the values in the Illustration we first load the package
and define the function and interval with

f := x→ 100

x2
· sin

(
10

x

)
; a := 1.0; b := 3.0

Then give the NumericalAnalysis command

Quadrature(f (x), x = a..b, adaptive = true, method = [simpson, 10−4], output =
information)
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4.6 Adaptive Quadrature Methods 227

This produces the approximation −1.42601481 and a table that lists all the intervals
on which Simpson’s rule was employed and whether the appropriate tolerance was satisfied
(indicated by the word PASS) or was not satisfied (indicated by the word fail). It also
gives what Maple thinks is the correct value of the integral to the decimal places listed, in
this case −1.42602476. Then it gives the absolute and relative errors, 9.946 × 10−6 and
6.975× 10−4, respectively, assuming that its correct value is accurate.

E X E R C I S E S E T 4.6

1. Compute the Simpson’s rule approximations S(a, b), S(a, (a + b)/2), and S((a + b)/2, b) for the
following integrals, and verify the estimate given in the approximation formula.

a.
∫ 1.5

1
x2 ln x dx b.

∫ 1

0
x2e−x dx

c.
∫ 0.35

0

2

x2 − 4
dx d.

∫ π/4

0
x2 sin x dx

e.
∫ π/4

0
e3x sin 2x dx f.

∫ 1.6

1

2x

x2 − 4
dx

g.
∫ 3.5

3

x√
x2 − 4

dx h.
∫ π/4

0
(cos x)2 dx

2. Use Adaptive quadrature to find approximations to within 10−3 for the integrals in Exercise 1. Do not
use a computer program to generate these results.

3. Use Adaptive quadrature to approximate the following integrals to within 10−5.

a.
∫ 3

1
e2x sin 3x dx b.

∫ 3

1
e3x sin 2x dx

c.
∫ 5

0

(
2x cos(2x)− (x − 2)2

)
dx d.

∫ 5

0

(
4x cos(2x)− (x − 2)2

)
dx

4. Use Adaptive quadrature to approximate the following integrals to within 10−5.

a.
∫ π

0
(sin x + cos x) dx b.

∫ 2

1
(x + sin 4x) dx

c.
∫ 1

−1
x sin 4x dx d.

∫ π/2

0
(6 cos 4x + 4 sin 6x)ex dx

5. Use Simpson’s Composite rule with n = 4, 6, 8, . . . , until successive approximations to the following
integrals agree to within 10−6. Determine the number of nodes required. Use the Adaptive Quadrature
Algorithm to approximate the integral to within 10−6, and count the number of nodes. Did Adaptive
quadrature produce any improvement?

a.
∫ π

0
x cos x2 dx b.

∫ π

0
x sin x2 dx

c.
∫ π

0
x2 cos x dx d.

∫ π

0
x2 sin x dx

6. Sketch the graphs of sin(1/x) and cos(1/x) on [0.1, 2]. Use Adaptive quadrature to approximate the
following integrals to within 10−3.

a.
∫ 2

0.1
sin

1

x
dx b.

∫ 2

0.1
cos

1

x
dx

7. The differential equation

mu′′(t)+ ku(t) = F0 cosωt

describes a spring-mass system with mass m, spring constant k, and no applied damping. The term
F0 cosωt describes a periodic external force applied to the system. The solution to the equation when
the system is initially at rest (u′(0) = u(0) = 0) is
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u(t) = F0

m(ω2
0 − ω2)

(cosωt − cosω0t) , where ω0 =
√

k

m
�= ω.

Sketch the graph of u when m = 1, k = 9, F0 = 1, ω = 2, and t ∈ [0, 2π ]. Approximate
∫ 2π

0 u(t) dt
to within 10−4.

8. If the term cu′(t) is added to the left side of the motion equation in Exercise 7, the resulting differential
equation describes a spring-mass system that is damped with damping constant c �= 0. The solution
to this equation when the system is initially at rest is

u(t) = c1er1t + c2er2 t + F0

c2ω2 + m2(ω2
0 − ω2)2

(
cω sinωt + m

(
ω2

0 − ω2
)

cosωt
)

,

where

r1 =
−c+

√
c2 − 4ω2

0m2

2m
and r2 =

−c−
√

c2 − 4ω2
0m2

2m
.

a. Let m = 1, k = 9, F0 = 1, c = 10, and ω = 2. Find the values of c1 and c2 so that
u(0) = u′(0) = 0.

b. Sketch the graph of u(t) for t ∈ [0, 2π ] and approximate
∫ 2π

0 u(t) dt to within 10−4.

9. Let T(a, b) and T(a, a+b
2 ) + T( a+b

2 , b) be the single and double applications of the Trapezoidal rule

to
∫ b

a f (x) dx. Derive the relationship between

∣∣∣∣T(a, b)− T

(
a,

a+ b

2

)
− T

(
a+ b

2
, b

)∣∣∣∣
and ∣∣∣∣

∫ b

a
f (x) dx − T

(
a,

a+ b

2

)
− T

(
a+ b

2
, b

)∣∣∣∣ .
10. The study of light diffraction at a rectangular aperture involves the Fresnel integrals

c(t) =
∫ t

0
cos

π

2
ω2 dω and s(t) =

∫ t

0
sin

π

2
ω2 dω.

Construct a table of values for c(t) and s(t) that is accurate to within 10−4 for values of t = 0.1,
0.2, . . . , 1.0.

4.7 Gaussian Quadrature

The Newton-Cotes formulas in Section 4.3 were derived by integrating interpolating poly-
nomials. The error term in the interpolating polynomial of degree n involves the (n + 1)st
derivative of the function being approximated, so a Newton-Cotes formula is exact when
approximating the integral of any polynomial of degree less than or equal to n.

All the Newton-Cotes formulas use values of the function at equally-spaced points.
This restriction is convenient when the formulas are combined to form the composite rules
we considered in Section 4.4, but it can significantly decrease the accuracy of the approx-
imation. Consider, for example, the Trapezoidal rule applied to determine the integrals of
the functions whose graphs are shown in Figure 4.15.
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Figure 4.15
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The Trapezoidal rule approximates the integral of the function by integrating the linear
function that joins the endpoints of the graph of the function. But this is not likely the best
line for approximating the integral. Lines such as those shown in Figure 4.16 would likely
give much better approximations in most cases.

Figure 4.16
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Gauss demonstrated his method
of efficient numerical integration
in a paper that was presented to
the Göttingen Society in 1814.
He let the nodes as well as the
coefficients of the function
evaluations be parameters in the
summation formula and found
the optimal placement of the
nodes. Goldstine [Golds],
pp 224–232, has an interesting
description of his development.

Gaussian quadrature chooses the points for evaluation in an optimal, rather than equally-
spaced, way. The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients c1, c2, . . . , cn, are
chosen to minimize the expected error obtained in the approximation

∫ b

a
f (x) dx ≈

n∑
i=1

cif (xi).

To measure this accuracy, we assume that the best choice of these values produces the exact
result for the largest class of polynomials, that is, the choice that gives the greatest degree
of precision.

The coefficients c1, c2, . . . , cn in the approximation formula are arbitrary, and the nodes
x1, x2, . . . , xn are restricted only by the fact that they must lie in [a, b], the interval of
integration. This gives us 2n parameters to choose. If the coefficients of a polynomial are
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230 C H A P T E R 4 Numerical Differentiation and Integration

considered parameters, the class of polynomials of degree at most 2n − 1 also contains
2n parameters. This, then, is the largest class of polynomials for which it is reasonable to
expect a formula to be exact. With the proper choice of the values and constants, exactness
on this set can be obtained.

To illustrate the procedure for choosing the appropriate parameters, we will show how
to select the coefficients and nodes when n = 2 and the interval of integration is [−1, 1]. We
will then discuss the more general situation for an arbitrary choice of nodes and coefficients
and show how the technique is modified when integrating over an arbitrary interval.

Suppose we want to determine c1, c2, x1, and x2 so that the integration formula∫ 1

−1
f (x) dx ≈ c1f (x1)+ c2f (x2)

gives the exact result whenever f (x) is a polynomial of degree 2(2) − 1 = 3 or less, that
is, when

f (x) = a0 + a1x + a2x2 + a3x3,

for some collection of constants, a0, a1, a2, and a3. Because∫
(a0 + a1x + a2x2 + a3x3) dx = a0

∫
1 dx + a1

∫
x dx + a2

∫
x2 dx + a3

∫
x3 dx,

this is equivalent to showing that the formula gives exact results when f (x) is 1, x, x2,
and x3. Hence, we need c1, c2, x1, and x2, so that

c1 · 1+ c2 · 1 =
∫ 1

−1
1 dx = 2, c1 · x1 + c2 · x2 =

∫ 1

−1
x dx = 0,

c1 · x2
1 + c2 · x2

2 =
∫ 1

−1
x2 dx = 2

3
, and c1 · x3

1 + c2 · x3
2 =

∫ 1

−1
x3 dx = 0.

A little algebra shows that this system of equations has the unique solution

c1 = 1, c2 = 1, x1 = −
√

3

3
, and x2 =

√
3

3
,

which gives the approximation formula

∫ 1

−1
f (x) dx ≈ f

(
−√3

3

)
+ f

(√
3

3

)
. (4.40)

This formula has degree of precision 3, that is, it produces the exact result for every poly-
nomial of degree 3 or less.

Legendre Polynomials

The technique we have described could be used to determine the nodes and coefficients for
formulas that give exact results for higher-degree polynomials, but an alternative method
obtains them more easily. In Sections 8.2 and 8.3 we will consider various collections of
orthogonal polynomials, functions that have the property that a particular definite integral
of the product of any two of them is 0. The set that is relevant to our problem is the Legendre
polynomials, a collection {P0(x), P1(x), . . . , Pn(x), . . . , } with properties:

(1) For each n, Pn(x) is a monic polynomial of degree n.
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4.7 Gaussian Quadrature 231

(2)
∫ 1

−1
P(x)Pn(x) dx = 0 whenever P(x) is a polynomial of degree less than n.

Recall that monic polynomials
have leading coefficient 1.

The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = x2 − 1

3
,

P3(x) = x3 − 3

5
x, and P4(x) = x4 − 6

7
x2 + 3

35
.

Adrien-Marie Legendre
(1752–1833) introduced this set
of polynomials in 1785. He had
numerous priority disputes with
Gauss, primarily due to Gauss’
failure to publish many of his
original results until long after he
had discovered them.

The roots of these polynomials are distinct, lie in the interval (−1, 1), have a symmetry
with respect to the origin, and, most importantly, are the correct choice for determining the
parameters that give us the nodes and coefficients for our quadrature method.

The nodes x1, x2, . . . , xn needed to produce an integral approximation formula that
gives exact results for any polynomial of degree less than 2n are the roots of the nth-degree
Legendre polynomial. This is established by the following result.

Theorem 4.7 Suppose that x1, x2, . . . , xn are the roots of the nth Legendre polynomial Pn(x) and that for
each i = 1, 2, . . . , n, the numbers ci are defined by

ci =
∫ 1

−1

n∏
j=1
j �=i

x − xj

xi − xj
dx.

If P(x) is any polynomial of degree less than 2n, then∫ 1

−1
P(x) dx =

n∑
i=1

ciP(xi).

Proof Let us first consider the situation for a polynomial P(x) of degree less than n. Rewrite
P(x) in terms of (n− 1)st Lagrange coefficient polynomials with nodes at the roots of the
nth Legendre polynomial Pn(x). The error term for this representation involves the nth
derivative of P(x). Since P(x) is of degree less than n, the nth derivative of P(x) is 0, and
this representation of is exact. So

P(x) =
n∑

i=1

P(xi)Li(x) =
n∑

i=1

n∏
j=1
j �=i

x − xj

xi − xj
P(xi)

and

∫ 1

−1
P(x) dx =

∫ 1

−1

⎡
⎢⎢⎣

n∑
i=1

n∏
j=1
j �=i

x − xj

xi − xj
P(xi)

⎤
⎥⎥⎦ dx

=
n∑

i=1

⎡
⎢⎢⎣
∫ 1

−1

n∏
j=1
j �=i

x − xj

xi − xj
dx

⎤
⎥⎥⎦P(xi) =

n∑
i=1

ciP(xi).

Hence the result is true for polynomials of degree less than n.
Now consider a polynomial P(x) of degree at least n but less than 2n. Divide P(x) by

the nth Legendre polynomial Pn(x). This gives two polynomials Q(x) and R(x), each of
degree less than n, with

P(x) = Q(x)Pn(x)+ R(x).
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232 C H A P T E R 4 Numerical Differentiation and Integration

Note that xi is a root of Pn(x) for each i = 1, 2, . . . , n, so we have

P(xi) = Q(xi)Pn(xi)+ R(xi) = R(xi).

We now invoke the unique power of the Legendre polynomials. First, the degree of the
polynomial Q(x) is less than n, so (by Legendre property (2)),∫ 1

−1
Q(x)Pn(x) dx = 0.

Then, since R(x) is a polynomial of degree less than n, the opening argument implies that∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi).

Putting these facts together verifies that the formula is exact for the polynomial P(x):∫ 1

−1
P(x) dx =

∫ 1

−1
[Q(x)Pn(x)+ R(x)] dx =

∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi) =
n∑

i=1

ciP(xi).

The constants ci needed for the quadrature rule can be generated from the equation
in Theorem 4.7, but both these constants and the roots of the Legendre polynomials are
extensively tabulated. Table 4.12 lists these values for n = 2, 3, 4, and 5.

Table 4.12 n Roots rn,i Coefficients cn,i

2 0.5773502692 1.0000000000
−0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
−0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
−0.5384693101 0.4786286705
−0.9061798459 0.2369268850

Example 1 Approximate
∫ 1
−1 ex cos x dx using Gaussian quadrature with n = 3.

Solution The entries in Table 4.12 give us∫ 1

−1
ex cos x dx ≈ 0.5e0.774596692 cos 0.774596692

+ 0.8 cos 0+ 0.5e−0.774596692 cos(−0.774596692)

= 1.9333904.

Integration by parts can be used to show that the true value of the integral is 1.9334214, so
the absolute error is less than 3.2× 10−5.
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Gaussian Quadrature on Arbitrary Intervals

An integral
∫ b

a f (x) dx over an arbitrary [a, b] can be transformed into an integral over
[−1, 1] by using the change of variables (see Figure 4.17):

t = 2x − a− b

b− a
⇐⇒ x = 1

2
[(b− a)t + a+ b].

Figure 4.17
t

x

�1

1

a b

(a, �1)

(b, 1)

2x � a � b
t � b � a

This permits Gaussian quadrature to be applied to any interval [a, b], because∫ b

a
f (x) dx =

∫ 1

−1
f

(
(b− a)t + (b+ a)

2

)
(b− a)

2
dt. (4.41)

Example 2 Consider the integral
∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.

(a) Compare the results for the closed Newton-Cotes formula with n = 1, the open
Newton-Cotes formula with n = 1, and Gaussian Quadrature when n = 2.

(b) Compare the results for the closed Newton-Cotes formula with n = 2, the open
Newton-Cotes formula with n = 2, and Gaussian Quadrature when n = 3.

Solution (a) Each of the formulas in this part requires 2 evaluations of the function f (x) =
x6 − x2 sin(2x). The Newton-Cotes approximations are

Closed n = 1 :
2

2
[f (1)+ f (3)] = 731.6054420;

Open n = 1 :
3(2/3)

2
[f (5/3)+ f (7/3)] = 188.7856682.

Gaussian quadrature applied to this problem requires that the integral first be transformed
into a problem whose interval of integration is [−1, 1]. Using Eq. (4.41) gives∫ 3

1
x6 − x2 sin(2x) dx =

∫ 1

−1
(t + 2)6 − (t + 2)2 sin(2(t + 2)) dt.

Gaussian quadrature with n = 2 then gives∫ 3

1
x6−x2 sin(2x) dx ≈ f (−0.5773502692+2)+f (0.5773502692+2) = 306.8199344;
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234 C H A P T E R 4 Numerical Differentiation and Integration

(b) Each of the formulas in this part requires 3 function evaluations. The Newton-Cotes
approximations are

Closed n = 2 :
(1)

3
[f (1)+ 4f (2)+ f (3)] = 333.2380940;

Open n = 2 :
4(1/2)

3
[2f (1.5)− f (2)+ 2f (2.5)] = 303.5912023.

Gaussian quadrature with n = 3, once the transformation has been done, gives∫ 3

1
x6 − x2 sin(2x) dx ≈ 0.5f (−0.7745966692+ 2)+ 0.8f (2)

+ 0.5f (0.7745966692+ 2) = 317.2641516.

The Gaussian quadrature results are clearly superior in each instance.

Maple has Composite Gaussian Quadrature in the NumericalAnalysis subpackage of
Maple’s Student package. The default for the number of partitions in the command is 10,
so the results in Example 2 would be found for n = 2 with

f := x6 − x2 sin(2x); a := 1; b := 3:
Quadrature(f (x), x = a..b, method = gaussian[2], partition = 1, output = information)

which returns the approximation, what Maple assumes is the exact value of the integral, the
absolute, and relative errors in the approximations, and the number of function evaluations.

The result when n = 3 is, of course, obtained by replacing the statement method =
gaussian[2] with method = gaussian[3].

E X E R C I S E S E T 4.7

1. Approximate the following integrals using Gaussian quadrature with n = 2, and compare your results
to the exact values of the integrals.

a.
∫ 1.5

1
x2 ln x dx b.

∫ 1

0
x2e−x dx

c.
∫ 0.35

0

2

x2 − 4
dx d.

∫ π/4

0
x2 sin x dx

e.
∫ π/4

0
e3x sin 2x dx f.

∫ 1.6

1

2x

x2 − 4
dx

g.
∫ 3.5

3

x√
x2 − 4

dx h.
∫ π/4

0
(cos x)2 dx

2. Repeat Exercise 1 with n = 3.

3. Repeat Exercise 1 with n = 4.

4. Repeat Exercise 1 with n = 5.

5. Determine constants a, b, c, and d that will produce a quadrature formula∫ 1

−1
f (x) dx = af (−1)+ bf (1)+ cf ′(−1)+ df ′(1)

that has degree of precision 3.

6. Determine constants a, b, c, and d that will produce a quadrature formula∫ 1

−1
f (x) dx = af (−1)+ bf (0)+ cf (1)+ df ′(−1)+ ef ′(1)

that has degree of precision 4.
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7. Verify the entries for the values of n = 2 and 3 in Table 4.12 on page 232 by finding the roots of the
respective Legendre polynomials, and use the equations preceding this table to find the coefficients
associated with the values.

8. Show that the formula Q(P) = ∑n
i=1 ciP(xi) cannot have degree of precision greater than 2n − 1,

regardless of the choice of c1, . . . , cn and x1, . . . , xn. [Hint: Construct a polynomial that has a double
root at each of the xi’s.]

9. Apply Maple’s Composite Gaussian Quadrature routine to approximate
∫ 1
−1 x2ex dx in the following

manner.

a. Use Gaussian Quadrature with n = 8 on the single interval [−1, 1].
b. Use Gaussian Quadrature with n = 4 on the intervals [−1, 0] and [0, 1].
c. Use Gaussian Quadrature with n = 2 on the intervals [−1,−0.5], [−0.5, 0], [0, 0.5] and [0.5, 1].
d. Give an explanation for the accuracy of the results.

4.8 Multiple Integrals

The techniques discussed in the previous sections can be modified for use in the approxi-
mation of multiple integrals. Consider the double integral∫∫

R

f (x, y) dA,

where R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d }, for some constants a, b, c, and d, is a
rectangular region in the plane. (See Figure 4.18.)

Figure 4.18
z

z � f (x, y)

a

b

c
d

R
x

y

The following illustration shows how the Composite Trapezoidal rule using two subin-
tervals in each coordinate direction would be applied to this integral.

Illustration Writing the double integral as an iterated integral gives∫∫
R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx.
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236 C H A P T E R 4 Numerical Differentiation and Integration

To simplify notation, let k = (d−c)/2 and h = (b−a)/2. Apply the Composite Trapezoidal
rule to the interior integral to obtain

∫ d

c
f (x, y) dy ≈ k

2

[
f (x, c)+ f (x, d)+ 2f

(
x,

c+ d

2

)]
.

This approximation is of order O
(
(d − c)3

)
. Then apply the Composite Trapezoidal rule

again to approximate the integral of this function of x:

∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≈

∫ b

a

(
d − c

4

)[
f (x, c)+ 2f

(
x,

c+ d

2

)
+ f (d)

]
dx

= b− a

4

(
d − c

4

)[
f (a, c)+ 2f

(
a,

c+ d

2

)
+ f (a, d)

]

+ b− a

4

(
2

(
d − c

4

)[
f

(
a+ b

2
, c

)

+ 2f

(
a+ b

2
,

c+ d

2

)
+
(

a+ b

2
, d

)])

+ b− a

4

(
d − c

4

)[
f (b, c)+ 2f

(
b,

c+ d

2

)
+ f (b, d)

]

= (b− a)(d − c)

16

[
f (a, c)+ f (a, d)+ f (b, c)+ f (b, d)

+ 2

(
f

(
a+ b

2
, c

)
+ f

(
a+ b

2
, d

)
+ f

(
a,

c+ d

2

)

+f
(

b,
c+ d

2

))
+ 4f

(
a+ b

2
,

c+ d

2

)]

This approximation is of order O
(
(b− a)(d − c)

[
(b− a)2 + (d − c)2

])
. Figure 4.19

shows a grid with the number of functional evaluations at each of the nodes used in the
approximation. �

Figure 4.19
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4.8 Multiple Integrals 237

As the illustration shows, the procedure is quite straightforward. But the number of
function evaluations grows with the square of the number required for a single integral. In
a practical situation we would not expect to use a method as elementary as the Composite
Trapezoidal rule. Instead we will employ the Composite Simpson’s rule to illustrate the
general approximation technique, although any other composite formula could be used in
its place.

To apply the Composite Simpson’s rule, we divide the region R by partitioning both
[a, b] and [c, d] into an even number of subintervals. To simplify the notation, we choose
even integers n and m and partition [a, b] and [c, d] with the evenly spaced mesh points
x0, x1, . . . , xn and y0, y1, . . . , ym, respectively. These subdivisions determine step sizes h =
(b− a)/n and k = (d − c)/m. Writing the double integral as the iterated integral

∫∫
R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx,

we first use the Composite Simpson’s rule to approximate

∫ d

c
f (x, y) dy,

treating x as a constant.
Let yj = c+ jk, for each j = 0, 1, . . . , m. Then

∫ d

c
f (x, y) dy = k

3

⎡
⎣f (x, y0)+ 2

(m/2)−1∑
j=1

f (x, y2 j)+ 4
m/2∑
j=1

f (x, y2 j−1)+ f (x, ym)

⎤
⎦

− (d − c)k4

180

∂4f

∂y4
(x,μ),

for some μ in (c, d). Thus

∫ b

a

∫ d

c
f (x, y) dy dx = k

3

[ ∫ b

a
f (x, y0) dx + 2

(m/2)−1∑
j=1

∫ b

a
f (x, y2 j) dx

+ 4
m/2∑
j=1

∫ b

a
f (x, y2 j−1) dx +

∫ b

a
f (x, ym) dx

]

− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx.

Composite Simpson’s rule is now employed on the integrals in this equation. Let xi = a+ih,
for each i = 0, 1, . . . , n. Then for each j = 0, 1, . . . , m, we have

∫ b

a
f (x, yj) dx = h

3

[
f (x0, yj)+ 2

(n/2)−1∑
i=1

f (x2i, yj)+ 4
n/2∑
i=1

f (x2i−1, yj)+ f (xn, yj)

]

− (b− a)h4

180

∂4f

∂x4
(ξj, yj),
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for some ξj in (a, b). The resulting approximation has the form

∫ b

a

∫ d

c
f (x, y) dy dx ≈ hk

9

{[
f (x0, y0)+ 2

(n/2)−1∑
i=1

f (x2i, y0)

+ 4
n/2∑
i=1

f (x2i−1, y0)+ f (xn, y0)

]

+ 2

[ (m/2)−1∑
j=1

f (x0, y2 j)+ 2
(m/2)−1∑

j=1

(n/2)−1∑
i=1

f (x2i, y2 j)

+ 4
(m/2)−1∑

j=1

n/2∑
i=1

f (x2i−1, y2 j)+
(m/2)−1∑

j=1

f (xn, y2 j)

]

+ 4

[ m/2∑
j=1

f (x0, y2 j−1)+ 2
m/2∑
j=1

(n/2)−1∑
i=1

f (x2i, y2 j−1)

+ 4
m/2∑
j=1

n/2∑
i=1

f (x2i−1, y2 j−1)+
m/2∑
j=1

f (xn, y2 j−1)

]

+
[
f (x0, ym)+ 2

(n/2)−1∑
i=1

f (x2i, ym)+ 4
n/2∑
i=1

f (x2i−1, ym)+ f (xn, ym)

]}
.

The error term E is given by

E = −k(b− a)h4

540

[
∂4f

∂x4
(ξ0, y0)+ 2

(m/2)−1∑
j=1

∂4f

∂x4
(ξ2 j, y2 j)+ 4

m/2∑
j=1

∂4f

∂x4
(ξ2 j−1, y2 j−1)

+ ∂
4f

∂x4
(ξm, ym)

]
− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx.

If ∂4f/∂x4 is continuous, the Intermediate Value Theorem 1.11 can be repeatedly
applied to show that the evaluation of the partial derivatives with respect to x can be replaced
by a common value and that

E = −k(b− a)h4

540

[
3m
∂4f

∂x4
(η,μ)

]
− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx,

for some (η,μ) in R. If ∂4f/∂y4 is also continuous, the Weighted Mean Value Theorem for
Integrals 1.13 implies that∫ b

a

∂4f

∂y4
(x,μ) dx = (b− a)

∂4f

∂y4
(η̂, μ̂),

for some (η̂, μ̂) in R. Because m = (d − c)/k, the error term has the form

E = −k(b− a)h4

540

[
3m
∂4f

∂x4
(η,μ)

]
− (d − c)(b− a)

180
k4 ∂

4f

∂y4
(η̂, μ̂)

which simplifies to

E = − (d − c)(b− a)

180

[
h4 ∂

4f

∂x4
(η,μ)+ k4 ∂

4f

∂y4
(η̂, μ̂)

]
,

for some (η,μ) and (η̂, μ̂) in R.
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Example 1 Use Composite Simpson’s rule with n = 4 and m = 2 to approximate∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx,

Solution The step sizes for this application are h = (2.0 − 1.4)/4 = 0.15 and k =
(1.5 − 1.0)/2 = 0.25. The region of integration R is shown in Figure 4.20, together with
the nodes (xi, yj), where i = 0, 1, 2, 3, 4 and j = 0, 1, 2. It also shows the coefficients wi,j of
f (xi, yi) = ln(xi + 2yi) in the sum that gives the Composite Simpson’s rule approximation
to the integral.

Figure 4.20

x

y
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1.00
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4

16 8 16

41

4
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4

1

The approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ (0.15)(0.25)

9

4∑
i=0

2∑
j=0

wi,j ln(xi + 2yj)

= 0.4295524387.

We have

∂4f

∂x4
(x, y) = −6

(x + 2y)4
and

∂4f

∂y4
(x, y) = −96

(x + 2y)4
,

and the maximum values of the absolute values of these partial derivatives occur on R when
x = 1.4 and y = 1.0. So the error is bounded by

|E| ≤ (0.5)(0.6)

180

[
(0.15)4 max

(x,y)inR

6

(x + 2y)4
+ (0.25)4 max

(x,y)inR

96

(x + 2y)4

]
≤ 4.72× 10−6.

The actual value of the integral to ten decimal places is∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.4295545265,

so the approximation is accurate to within 2.1× 10−6.

The same techniques can be applied for the approximation of triple integrals as well as
higher integrals for functions of more than three variables. The number of functional evalu-
ations required for the approximation is the product of the number of functional evaluations
required when the method is applied to each variable.
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Gaussian Quadrature for Double Integral Approximation

To reduce the number of functional evaluations, more efficient methods such as Gaussian
quadrature, Romberg integration, or Adaptive quadrature can be incorporated in place of the
Newton-Cotes formulas. The following example illustrates the use of Gaussian quadrature
for the integral considered in Example 1.

Example 2 Use Gaussian quadrature with n = 3 in both dimensions to approximate the integral

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx.

Solution Before employing Gaussian quadrature to approximate this integral, we need to
transform the region of integration

R = { (x, y) | 1.4 ≤ x ≤ 2.0, 1.0 ≤ y ≤ 1.5 }

into

R̂ = { (u, v) | −1 ≤ u ≤ 1,−1 ≤ v ≤ 1 }.

The linear transformations that accomplish this are

u = 1

2.0− 1.4
(2x − 1.4− 2.0) and v = 1

1.5− 1.0
(2y− 1.0− 1.5),

or, equivalently, x = 0.3u+ 1.7 and y = 0.25v+ 1.25. Employing this change of variables
gives an integral on which Gaussian quadrature can be applied:

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.075

∫ 1

−1

∫ 1

−1
ln(0.3u+ 0.5v + 4.2) dv du.

The Gaussian quadrature formula for n = 3 in both u and v requires that we use the nodes

u1 = v1 = r3,2 = 0, u0 = v0 = r3,1 = −0.7745966692,

and

u2 = v2 = r3,3 = 0.7745966692.

The associated weights are c3,2 = 0.8 and c3,1 = c3,3 = 0.5. (These are given in Table 4.12
on page 232.) The resulting approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ 0.075

3∑
i=1

3∑
j=1

c3,ic3,j ln(0.3r3,i + 0.5r3,j + 4.2)

= 0.4295545313.

Although this result requires only 9 functional evaluations compared to 15 for the Composite
Simpson’s rule considered in Example 1, it is accurate to within 4.8 × 10−9, compared to
2.1× 10−6 accuracy in Example 1.
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Non-Rectangular Regions

The use of approximation methods for double integrals is not limited to integrals with
rectangular regions of integration. The techniques previously discussed can be modified to
approximate double integrals of the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx (4.42)

or

∫ d

c

∫ b(y)

a(y)
f (x, y) dx dy. (4.43)

In fact, integrals on regions not of this type can also be approximated by performing appro-
priate partitions of the region. (See Exercise 10.)

To describe the technique involved with approximating an integral in the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

we will use the basic Simpson’s rule to integrate with respect to both variables. The
step size for the variable x is h = (b − a)/2, but the step size for y varies with x (see
Figure 4.21) and is written

k(x) = d(x)− c(x)

2
.

Figure 4.21

z
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y
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This gives∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx ≈

∫ b

a

k(x)

3
[f (x, c(x))+ 4f (x, c(x)+ k(x))+ f (x, d(x))] dx

≈ h

3

{
k(a)

3
[f (a, c(a))+ 4f (a, c(a)+ k(a))+ f (a, d(a))]

+ 4k(a+ h)

3
[f (a+ h, c(a+ h))+ 4f (a+ h, c(a+ h)

+ k(a+ h))+ f (a+ h, d(a+ h))]

+ k(b)

3
[f (b, c(b))+ 4f (b, c(b)+ k(b))+ f (b, d(b))]

}
.

Algorithm 4.4 applies the Composite Simpson’s rule to an integral in the form (4.42).
Integrals in the form (4.43) can, of course, be handled similarly.

ALGORITHM

4.4
Simpson’s Double Integral

To approximate the integral

I =
∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx :

INPUT endpoints a, b: even positive integers m, n.

OUTPUT approximation J to I .

Step 1 Set h = (b− a)/n;
J1 = 0; (End terms.)
J2 = 0; (Even terms.)
J3 = 0. (Odd terms.)

Step 2 For i = 0, 1, . . . , n do Steps 3–8.

Step 3 Set x = a+ ih; (Composite Simpson’s method for x.)
HX = (d(x)− c(x))/m;
K1 = f (x, c(x))+ f (x, d(x)); (End terms.)
K2 = 0; (Even terms.)
K3 = 0. (Odd terms.)

Step 4 For j = 1, 2, . . . , m− 1 do Step 5 and 6.

Step 5 Set y = c(x)+ jHX;
Q = f (x, y).

Step 6 If j is even then set K2 = K2 + Q
else set K3 = K3 + Q.

Step 7 Set L = (K1 + 2K2 + 4K3)HX/3.(
L ≈

∫ d(xi)

c(xi)

f (xi, y) dy by the Composite Simpson’s method.

)

Step 8 If i = 0 or i = n then set J1 = J1 + L
else if i is even then set J2 = J2 + L
else set J3 = J3 + L.
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4.8 Multiple Integrals 243

Step 9 Set J = h(J1 + 2J2 + 4J3)/3.

Step 10 OUTPUT (J);
STOP.

To apply Gaussian quadrature to the double integral∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

first requires transforming, for each x in [a, b], the variable y in the interval [c(x), d(x)] into
the variable t in the interval [−1, 1]. This linear transformation gives

f (x, y) = f
(

x,
(d(x)− c(x))t + d(x)+ c(x)

2

)
and dy = d(x)− c(x)

2
dt.

Then, for each x in [a, b], we apply Gaussian quadrature to the resulting integral∫ d(x)

c(x)
f (x, y) dy =

∫ 1

−1
f

(
x,
(d(x)− c(x))t + d(x)+ c(x)

2

)
dt

The reduced calculation makes it
generally worthwhile to apply
Gaussian quadrature rather than a
Simpson’s technique when
approximating double integrals.

to produce∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx≈

∫ b

a

d(x)−c(x)

2

n∑
j=1

cn,jf

(
x,
(d(x)− c(x))rn,j + d(x)+ c(x)

2

)
dx,

where, as before, the roots rn,j and coefficients cn,j come from Table 4.12 on page 232.
Now the interval [a, b] is transformed to [−1, 1], and Gaussian quadrature is applied
to approximate the integral on the right side of this equation. The details are given in
Algorithm 4.5.

ALGORITHM

4.5
Gaussian Double Integral

To approximate the integral ∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx :

INPUT endpoints a, b; positive integers m, n.
(The roots ri,j and coefficients ci,j need to be available for i = max{m, n}
and for 1 ≤ j ≤ i.)

OUTPUT approximation J to I .

Step 1 Set h1 = (b− a)/2;
h2 = (b+ a)/2;
J = 0.

Step 2 For i = 1, 2, . . . , m do Steps 3–5.

Step 3 Set JX = 0;
x = h1rm,i + h2;
d1 = d(x);
c1 = c(x);
k1 = (d1 − c1)/2;
k2 = (d1 + c1)/2.
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Step 4 For j = 1, 2, . . . , n do
set y = k1rn,j + k2;

Q = f (x, y);
JX = JX + cn,jQ.

Step 5 Set J = J + cm,ik1JX.

Step 6 Set J = h1J .

Step 7 OUTPUT (J);
STOP.

Illustration The volume of the solid in Figure 4.22 is approximated by applying Simpson’s Double
Integral Algorithm with n = m = 10 to

∫ 0.5

0.1

∫ x2

x3
ey/x dy dx.

This requires 121 evaluations of the function f (x, y) = ey/x and produces the value
0.0333054, which approximates the volume of the solid shown in Figure 4.22 to nearly
seven decimal places. Applying the Gaussian Quadrature Algorithm with n = m = 5 re-
quires only 25 function evaluations and gives the approximation 0.03330556611, which is
accurate to 11 decimal places. �

Figure 4.22
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y
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Triple Integral Approximation

Triple integrals of the form

The reduced calculation makes it
almost always worthwhile to
apply Gaussian quadrature rather
than a Simpson’s technique when
approximating triple or higher
integrals.

∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f (x, y, z) dz dy dx

(see Figure 4.23) are approximated in a similar manner. Because of the number of calcu-
lations involved, Gaussian quadrature is the method of choice. Algorithm 4.6 implements
this procedure.

Figure 4.23

y

z

y � c(x)
y � d(x)

a

b R

x

x

z � β(x, y)

z � α(x, y)

ALGORITHM

4.6
GaussianTriple Integral

To approximate the integral∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f (x, y, z) dz dy dx :

INPUT endpoints a, b; positive integers m, n, p.
(The roots ri,j and coefficients ci,j need to be available for i = max{n, m, p}
and for 1 ≤ j ≤ i.)

OUTPUT approximation J to I .

Step 1 Set h1 = (b− a)/2;
h2 = (b+ a)/2;
J = 0.

Step 2 For i = 1, 2, . . . , m do Steps 3–8.
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Step 3 Set JX = 0;
x = h1rm,i + h2;
d1 = d(x);
c1 = c(x);
k1 = (d1 − c1)/2;
k2 = (d1 + c1)/2.

Step 4 For j = 1, 2, . . . , n do Steps 5–7.

Step 5 Set JY = 0;
y = k1rn, j + k2;
β1 = β(x, y);
α1 = α(x, y);
l1 = (β1 − α1)/2;
l2 = (β1 + α1)/2.

Step 6 For k = 1, 2, . . . , p do
set z = l1rp, k + l2;

Q = f (x, y, z);
JY = JY+ cp,kQ.

Step 7 Set JX = JX+ cn, jl1JY.

Step 8 Set J = J + cm,ik1JX.

Step 9 Set J = h1J .

Step 10 OUTPUT (J);
STOP.

The following example requires the evaluation of four triple integrals.

Illustration The center of a mass of a solid region D with density function σ occurs at

(x, y, z) =
(

Myz

M
,

Mxz

M
,

Mxy

M

)
,

where

Myz =
∫∫∫

D
xσ(x, y, z) dV , Mxz =

∫∫∫
D

yσ(x, y, z) dV

and

Mxy =
∫∫∫

D
zσ(x, y, z) dV

are the moments about the coordinate planes and the mass of D is

M =
∫∫∫

D
σ(x, y, z) dV .

The solid shown in Figure 4.24 is bounded by the upper nappe of the cone z2 = x2+ y2 and
the plane z = 2. Suppose that this solid has density function given by

σ(x, y, z) =
√

x2 + y2.
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Figure 4.24

x

y

z

1
2 1

2

1

2

Applying the Gaussian Triple Integral Algorithm 4.6 with n = m = p = 5 requires 125
function evaluations per integral and gives the following approximations:

M =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx

= 4
∫ 2

0

∫ √4−x2

0

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx ≈ 8.37504476,

Myz =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

x
√

x2 + y2 dz dy dx ≈ −5.55111512× 10−17,

Mxz =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

y
√

x2 + y2 dz dy dx ≈ −8.01513675× 10−17,

Mxy =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

z
√

x2 + y2 dz dy dx ≈ 13.40038156.

This implies that the approximate location of the center of mass is

(x, y, z) = (0, 0, 1.60003701).

These integrals are quite easy to evaluate directly. If you do this, you will find that the exact
center of mass occurs at (0, 0, 1.6). �

Multiple integrals can be evaluated in Maple using the MultInt command in the Multi-
variateCalculus subpackage of the Student package. For example, to evaluate the multiple
integral

∫ 4

2

∫ x+6

x−1

∫ 4+y2

−2
x2 + y2 + z dz dy dx
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we first load the package and define the function with

with(Student[MultivariateCalculus]): f := (x, y, z)→ x2 + y2 + z

Then issue the command

MultiInt(f (x, y, z), z = −2..4+ y2, y = x − 1.. x + 6, x = 2..4)

which produces the result

1.995885970

E X E R C I S E S E T 4.8

1. Use Algorithm 4.4 with n = m = 4 to approximate the following double integrals, and compare the
results to the exact answers.

a.
∫ 2.5

2.1

∫ 1.4

1.2
xy2 dy dx b.

∫ 0.5

0

∫ 0.5

0
ey−x dy dx

c.
∫ 2.2

2

∫ 2x

x
(x2 + y3) dy dx d.

∫ 1.5

1

∫ x

0
(x2 +√y) dy dx

2. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in
Exercise 1 to within 10−6 of the actual value.

3. Use Algorithm 4.4 with (i) n = 4, m = 8, (ii) n = 8, m = 4, and (iii) n = m = 6 to approximate the
following double integrals, and compare the results to the exact answers.

a.
∫ π/4

0

∫ cos x

sin x
(2y sin x + cos2 x) dy dx b.

∫ e

1

∫ x

1
ln xy dy dx

c.
∫ 1

0

∫ 2x

x
(x2 + y3) dy dx d.

∫ 1

0

∫ 2x

x
(y2 + x3) dy dx

e.
∫ π

0

∫ x

0
cos x dy dx f.

∫ π

0

∫ x

0
cos y dy dx

g.
∫ π/4

0

∫ sin x

0

1√
1− y2

dy dx h.
∫ 3π/2

−π

∫ 2π

0
(y sin x + x cos y) dy dx

4. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in
Exercise 3 to within 10−6 of the actual value.

5. Use Algorithm 4.5 with n = m = 2 to approximate the integrals in Exercise 1, and compare the
results to those obtained in Exercise 1.

6. Find the smallest values of n = m so that Algorithm 4.5 can be used to approximate the integrals in
Exercise 1 to within 10−6. Do not continue beyond n = m = 5. Compare the number of functional
evaluations required to the number required in Exercise 2.

7. Use Algorithm 4.5 with (i) n = m = 3, (ii) n = 3, m = 4, (iii) n = 4, m = 3, and (iv) n = m = 4 to
approximate the integrals in Exercise 3.

8. Use Algorithm 4.5 with n = m = 5 to approximate the integrals in Exercise 3. Compare the number
of functional evaluations required to the number required in Exercise 4.

9. Use Algorithm 4.4 with n = m = 14 and Algorithm 4.5 with n = m = 4 to approximate∫∫
R

e−(x+y) dA,

for the region R in the plane bounded by the curves y = x2 and y = √x.
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10. Use Algorithm 4.4 to approximate ∫∫
R

√
xy+ y2 dA,

where R is the region in the plane bounded by the lines x + y = 6, 3y− x = 2, and 3x − y = 2. First
partition R into two regions R1 and R2 on which Algorithm 4.4 can be applied. Use n = m = 6 on
both R1 and R2.

11. A plane lamina is a thin sheet of continuously distributed mass. If σ is a function describing the
density of a lamina having the shape of a region R in the xy-plane, then the center of the mass of the
lamina (x, y) is

x̄ =
∫∫
R

xσ(x, y) dA∫∫
R

σ(x, y) dA
, ȳ =

∫∫
R

yσ(x, y) dA∫∫
R

σ(x, y) dA
.

Use Algorithm 4.4 with n = m = 14 to find the center of mass of the lamina described by R =
{(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ √1− x2 } with the density function σ(x, y) = e−(x2+y2). Compare the
approximation to the exact result.

12. Repeat Exercise 11 using Algorithm 4.5 with n = m = 5.

13. The area of the surface described by z = f (x, y) for (x, y) in R is given by∫∫
R

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA.

Use Algorithm 4.4 with n = m = 8 to find an approximation to the area of the surface on the
hemisphere x2 + y2 + z2 = 9, z ≥ 0 that lies above the region in the plane described by R = { (x, y) |
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.

14. Repeat Exercise 13 using Algorithm 4.5 with n = m = 4.

15. Use Algorithm 4.6 with n = m = p = 2 to approximate the following triple integrals, and compare
the results to the exact answers.

a.
∫ 1

0

∫ 2

1

∫ 0.5

0
ex+y+z dz dy dx b.

∫ 1

0

∫ 1

x

∫ y

0
y2z dz dy dx

c.
∫ 1

0

∫ x

x2

∫ x+y

x−y
y dz dy dx d.

∫ 1

0

∫ x

x2

∫ x+y

x−y
z dz dy dx

e.
∫ π

0

∫ x

0

∫ xy

0

1

y
sin

z

y
dz dy dx f.

∫ 1

0

∫ 1

0

∫ xy

−xy
ex2+y2

dz dy dx

16. Repeat Exercise 15 using n = m = p = 3.

17. Repeat Exercise 15 using n = m = p = 4 and n = m = p = 5.

18. Use Algorithm 4.6 with n = m = p = 4 to approximate∫∫∫
S

xy sin(yz) dV ,

where S is the solid bounded by the coordinate planes and the planes x = π , y = π/2, z = π/3.
Compare this approximation to the exact result.

19. Use Algorithm 4.6 with n = m = p = 5 to approximate∫∫∫
S

√
xyz dV ,

where S is the region in the first octant bounded by the cylinder x2+y2 = 4, the sphere x2+y2+z2 = 4,
and the plane x + y+ z = 8. How many functional evaluations are required for the approximation?
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4.9 Improper Integrals

Improper integrals result when the notion of integration is extended either to an interval
of integration on which the function is unbounded or to an interval with one or more
infinite endpoints. In either circumstance, the normal rules of integral approximation must
be modified.

Left Endpoint Singularity

We will first consider the situation when the integrand is unbounded at the left endpoint
of the interval of integration, as shown in Figure 4.25. In this case we say that f has a
singularity at the endpoint a. We will then show how other improper integrals can be
reduced to problems of this form.

Figure 4.25

x

y � f (x)

y

a b

It is shown in calculus that the improper integral with a singularity at the left endpoint,∫ b

a

dx

(x − a)p
,

converges if and only if 0 < p < 1, and in this case, we define

∫ b

a

1

(x − a)p
dx = lim

M→a+
(x − a)1−p

1− p

∣∣∣∣
x=b

x=M

= (b− a)1−p

1− p
.

Example 1 Show that the improper integral
∫ 1

0

1√
x

dx converges but
∫ 1

0

1

x2
dx diverges.

Solution For the first integral we have∫ 1

0

1√
x

dx = lim
M→0+

∫ 1

M
x−1/2 dx = lim

M→0+
2x1/2

∣∣x=1

x=M = 2− 0 = 2,

but the second integral∫ 1

0

1

x2
dx = lim

M→0+

∫ 1

M
x−2 dx = lim

M→0+
−x−1

∣∣x=1

x=M

is unbounded.
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If f is a function that can be written in the form

f (x) = g(x)

(x − a)p
,

where 0 < p < 1 and g is continuous on [a, b], then the improper integral∫ b

a
f (x) dx

also exists. We will approximate this integral using the Composite Simpson’s rule, provided
that g ∈ C5[a, b]. In that case, we can construct the fourth Taylor polynomial, P4(x), for g
about a,

P4(x) = g(a)+ g′(a)(x − a)+ g′′(a)
2! (x − a)2 + g′′′(a)

3! (x − a)3 + g(4)(a)

4! (x − a)4,

and write ∫ b

a
f (x) dx =

∫ b

a

g(x)− P4(x)

(x − a)p
dx +

∫ b

a

P4(x)

(x − a)p
dx. (4.44)

Because P(x) is a polynomial, we can exactly determine the value of

∫ b

a

P4(x)

(x − a)p
dx =

4∑
k=0

∫ b

a

g(k)(a)

k! (x−a)k−p dx =
4∑

k=0

g(k)(a)

k!(k + 1− p)
(b−a)k+1−p. (4.45)

This is generally the dominant portion of the approximation, especially when the Taylor
polynomial P4(x) agrees closely with g(x) throughout the interval [a, b].

To approximate the integral of f , we must add to this value the approximation of∫ b

a

g(x)− P4(x)

(x − a)p
dx.

To determine this, we first define

G(x) =
{

g(x)−P4(x)
(x−a)p , if a < x ≤ b,

0, if x = a.

This gives us a continuous function on [a, b]. In fact, 0 < p < 1 and P(k)4 (a) agrees with
g(k)(a) for each k = 0, 1, 2, 3, 4, so we have G ∈ C4[a, b]. This implies that the Composite
Simpson’s rule can be applied to approximate the integral of G on [a, b]. Adding this
approximation to the value in Eq. (4.45) gives an approximation to the improper integral of
f on [a, b], within the accuracy of the Composite Simpson’s rule approximation.

Example 2 Use Composite Simpson’s rule with h = 0.25 to approximate the value of the improper
integral ∫ 1

0

ex

√
x

dx.

Solution The fourth Taylor polynomial for ex about x = 0 is

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
,
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so the dominant portion of the approximation to
∫ 1

0

ex

√
x

dx is

∫ 1

0

P4(x)√
x

dx =
∫ 1

0

(
x−1/2 + x1/2 + 1

2
x3/2 + 1

6
x5/2 + 1

24
x7/2

)
dx

= lim
M→0+

[
2x1/2 + 2

3
x3/2 + 1

5
x5/2 + 1

21
x7/2 + 1

108
x9/2

]1

M

= 2+ 2

3
+ 1

5
+ 1

21
+ 1

108
≈ 2.9235450.

For the second portion of the approximation to
∫ 1

0

ex

√
x

dx we need to approximate∫ 1

0
G(x) dx, where

G(x) =
⎧⎨
⎩

1√
x
(ex − P4(x)), if 0 < x ≤ 1,

0, if x = 0.

Table 4.13 lists the values needed for the Composite Simpson’s rule for this approximation.Table 4.13

x G(x)

0.00 0
0.25 0.0000170
0.50 0.0004013
0.75 0.0026026
1.00 0.0099485

Using these data and the Composite Simpson’s rule gives

∫ 1

0
G(x) dx ≈ 0.25

3
[0+ 4(0.0000170)+ 2(0.0004013)+ 4(0.0026026)+ 0.0099485]

= 0.0017691.

Hence ∫ 1

0

ex

√
x

dx ≈ 2.9235450+ 0.0017691 = 2.9253141.

This result is accurate to within the accuracy of the Composite Simpson’s rule approximation
for the function G. Because |G(4)(x)| < 1 on [0, 1], the error is bounded by

1− 0

180
(0.25)4 = 0.0000217.

Right Endpoint Singularity

To approximate the improper integral with a singularity at the right endpoint, we could
develop a similar technique but expand in terms of the right endpoint b instead of the left
endpoint a. Alternatively, we can make the substitution

z = −x, dz = − dx

to change the improper integral into one of the form

∫ b

a
f (x) dx =

∫ −a

−b
f (−z) dz, (4.46)

which has its singularity at the left endpoint. Then we can apply the left endpoint singularity
technique we have already developed. (See Figure 4.26.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.9 Improper Integrals 253

Figure 4.26

x z

y yFor  z � �x

y � f (�z)y � f (x)

a b �a�b

An improper integral with a singularity at c, where a < c < b, is treated as the sum of
improper integrals with endpoint singularities since

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Infinite Singularity

The other type of improper integral involves infinite limits of integration. The basic integral
of this type has the form ∫ ∞

a

1

xp
dx,

for p > 1. This is converted to an integral with left endpoint singularity at 0 by making the
integration substitution

t = x−1, dt = −x−2 dx, so dx = −x2 dt = −t−2 dt.

Then ∫ ∞
a

1

xp
dx =

∫ 0

1/a
− tp

t2
dt =

∫ 1/a

0

1

t2−p
dt.

In a similar manner, the variable change t = x−1 converts the improper integral∫∞
a f (x) dx into one that has a left endpoint singularity at zero:

∫ ∞
a
f (x) dx =

∫ 1/a

0
t−2f

(
1

t

)
dt. (4.47)

It can now be approximated using a quadrature formula of the type described earlier.

Example 3 Approximate the value of the improper integral

I =
∫ ∞

1
x−3/2 sin

1

x
dx.
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Solution We first make the variable change t = x−1, which converts the infinite singularity
into one with a left endpoint singularity. Then

dt = −x−2 dx, so dx = −x2 dt = − 1

t2
dt,

and

I =
∫ x=∞

x=1
x−3/2 sin

1

x
dx =

∫ t=0

t=1

(
1

t

)−3/2

sin t

(
− 1

t2
dt

)
=
∫ 1

0
t−1/2 sin t dt.

The fourth Taylor polynomial, P4(t), for sin t about 0 is

P4(t) = t − 1

6
t3,

so

G(t) =

⎧⎪⎨
⎪⎩

sin t − t + 1
6 t3

t1/2
, if 0 < t ≤ 1

0, if t = 0

is in C4[0, 1], and we have

I =
∫ 1

0
t−1/2

(
t − 1

6
t3

)
dt +

∫ 1

0

sin t − t + 1
6 t3

t1/2
dt

=
[

2

3
t3/2 − 1

21
t7/2

]1

0

+
∫ 1

0

sin t − t + 1
6 t3

t1/2
dt

= 0.61904761+
∫ 1

0

sin t − t + 1
6 t3

t1/2
dt.

The result from the Composite Simpson’s rule with n = 16 for the remaining integral is
0.0014890097. This gives a final approximation of

I = 0.0014890097+ 0.61904761 = 0.62053661,

which is accurate to within 4.0× 10−8.

E X E R C I S E S E T 4.9

1. Use Simpson’s Composite rule and the given values of n to approximate the following improper
integrals.

a.
∫ 1

0
x−1/4 sin x dx, n = 4 b.

∫ 1

0

e2x

5
√

x2
dx, n = 6

c.
∫ 2

1

ln x

(x − 1)1/5
dx, n = 8 d.

∫ 1

0

cos 2x

x1/3
dx, n = 6
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2. Use the Composite Simpson’s rule and the given values of n to approximate the following improper
integrals.

a.
∫ 1

0

e−x

√
1− x

dx, n = 6 b.
∫ 2

0

xex

3
√
(x − 1)2

dx, n = 8

3. Use the transformation t = x−1 and then the Composite Simpson’s rule and the given values of n to
approximate the following improper integrals.

a.
∫ ∞

1

1

x2 + 9
dx, n = 4 b.

∫ ∞
1

1

1+ x4
dx, n = 4

c.
∫ ∞

1

cos x

x3
dx, n = 6 d.

∫ ∞
1

x−4 sin x dx, n = 6

4. The improper integral
∫∞

0 f (x) dx cannot be converted into an integral with finite limits using the
substitution t = 1/x because the limit at zero becomes infinite. The problem is resolved by first
writing

∫∞
0 f (x) dx = ∫ 1

0 f (x) dx+ ∫∞1 f (x) dx. Apply this technique to approximate the following
improper integrals to within 10−6.

a.
∫ ∞

0

1

1+ x4
dx b.

∫ ∞
0

1

(1+ x2)3
dx

5. Suppose a body of mass m is traveling vertically upward starting at the surface of the earth. If all
resistance except gravity is neglected, the escape velocity v is given by

v2 = 2gR
∫ ∞

1
z−2 dz, where z = x

R
,

R = 3960 miles is the radius of the earth, and g = 0.00609 mi/s2 is the force of gravity at the earth’s
surface. Approximate the escape velocity v.

6. The Laguerre polynomials {L0(x), L1(x) . . .} form an orthogonal set on [0,∞) and satisfy∫∞
0 e−xLi(x)Lj(x) dx = 0, for i �= j. (See Section 8.2.) The polynomial Ln(x) has n distinct

zeros x1, x2, . . . , xn in [0,∞). Let

cn,i =
∫ ∞

0
e−x

n∏
j=1
j �=i

x − xj

xi − xj
dx.

Show that the quadrature formula

∫ ∞
0
f (x)e−x dx =

n∑
i=1

cn,if (xi)

has degree of precision 2n− 1. (Hint: Follow the steps in the proof of Theorem 4.7.)

7. The Laguerre polynomials L0(x) = 1, L1(x) = 1 − x, L2(x) = x2 − 4x + 2, and L3(x) = −x3 +
9x2 − 18x + 6 are derived in Exercise 11 of Section 8.2. As shown in Exercise 6, these polynomials
are useful in approximating integrals of the form∫ ∞

0
e−xf (x) dx = 0.

a. Derive the quadrature formula using n = 2 and the zeros of L2(x).

b. Derive the quadrature formula using n = 3 and the zeros of L3(x).

8. Use the quadrature formulas derived in Exercise 7 to approximate the integral∫ ∞
0

√
xe−x dx.

9. Use the quadrature formulas derived in Exercise 7 to approximate the integral∫ ∞
−∞

1

1+ x2
dx.
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4.10 Survey of Methods and Software

In this chapter we considered approximating integrals of functions of one, two, or three
variables, and approximating the derivatives of a function of a single real variable.

The Midpoint rule, Trapezoidal rule, and Simpson’s rule were studied to introduce the
techniques and error analysis of quadrature methods. Composite Simpson’s rule is easy to
use and produces accurate approximations unless the function oscillates in a subinterval
of the interval of integration. Adaptive quadrature can be used if the function is suspected
of oscillatory behavior. To minimize the number of nodes while maintaining accuracy, we
used Gaussian quadrature. Romberg integration was introduced to take advantage of the
easily applied Composite Trapezoidal rule and extrapolation.

Most software for integrating a function of a single real variable is based either on the
adaptive approach or extremely accurate Gaussian formulas. Cautious Romberg integration
is an adaptive technique that includes a check to make sure that the integrand is smoothly
behaved over subintervals of the integral of integration. This method has been successfully
used in software libraries. Multiple integrals are generally approximated by extending good
adaptive methods to higher dimensions. Gaussian-type quadrature is also recommended to
decrease the number of function evaluations.

The main routines in both the IMSL and NAG Libraries are based on QUADPACK:
A Subroutine Package for Automatic Integration by R. Piessens, E. de Doncker-Kapenga,
C. W. Uberhuber, and D. K. Kahaner published by Springer-Verlag in 1983 [PDUK].

The IMSL Library contains an adaptive integration scheme based on the 21-point
Gaussian-Kronrod rule using the 10-point Gaussian rule for error estimation. The Gaussian
rule uses the ten points x1, . . . , x10 and weights w1, . . . ,w10 to give the quadrature formula∑10

i=1wif (xi) to approximate
∫ b

a f (x) dx. The additional points x11, . . . , x21, and the new

weights v1, . . . , v21, are then used in the Kronrod formula
∑21

i=1 vif (xi). The results of the
two formulas are compared to eliminate error. The advantage in using x1, . . . , x10 in each
formula is that f needs to be evaluated only at 21 points. If independent 10- and 21-point
Gaussian rules were used, 31 function evaluations would be needed. This procedure permits
endpoint singularities in the integrand.

Other IMSL subroutines allow for endpoint singularities, user-specified singularities,
and infinite intervals of integration. In addition, there are routines for applying Gauss-
Kronrod rules to integrate a function of two variables, and a routine to use Gaussian quadra-
ture to integrate a function of n variables over n intervals of the form [ai, bi].

The NAG Library includes a routine to compute the integral of f over the interval
[a, b] using an adaptive method based on Gaussian Quadrature using Gauss 10-point and
Kronrod 21-point rules. It also has a routine to approximate an integral using a family of
Gaussian-type formulas based on 1, 3, 5, 7, 15, 31, 63, 127, and 255 nodes. These interlacing
high-precision rules are due to Patterson [Pat] and are used in an adaptive manner. NAG
includes many other subroutines for approximating integrals.

MATLAB has a routine to approximate a definite integral using an adaptive Simpson’s
rule, and another to approximate the definite integral using an adaptive eight-panel Newton-
Cotes rule.

Although numerical differentiation is unstable, derivative approximation formulas are
needed for solving differential equations. The NAG Library includes a subroutine for the
numerical differentiation of a function of one real variable with differentiation to the four-
teenth derivative being possible. IMSL has a function that uses an adaptive change in step
size for finite differences to approximate the first, second, or third, derivative of f at x to
within a given tolerance. IMSL also includes a subroutine to compute the derivatives of a
function defined on a set of points using quadratic interpolation. Both packages allow the
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differentiation and integration of interpolatory cubic splines constructed by the subroutines
mentioned in Section 3.5.

For further reading on numerical integration we recommend the books by Engels [E]
and by Davis and Rabinowitz [DR]. For more information on Gaussian quadrature see
Stroud and Secrest [StS]. Books on multiple integrals include those by Stroud [Stro] and
by Sloan and Joe [SJ].
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